Metamath Proof Explorer


Theorem dgraaub

Description: Upper bound on degree of an algebraic number. (Contributed by Stefan O'Rear, 25-Nov-2014) (Proof shortened by AV, 29-Sep-2020)

Ref Expression
Assertion dgraaub P Poly P 0 𝑝 A P A = 0 deg 𝔸 A deg P

Proof

Step Hyp Ref Expression
1 simprl P Poly P 0 𝑝 A P A = 0 A
2 eldifsn P Poly 0 𝑝 P Poly P 0 𝑝
3 2 biimpri P Poly P 0 𝑝 P Poly 0 𝑝
4 3 adantr P Poly P 0 𝑝 A P A = 0 P Poly 0 𝑝
5 simprr P Poly P 0 𝑝 A P A = 0 P A = 0
6 fveq1 a = P a A = P A
7 6 eqeq1d a = P a A = 0 P A = 0
8 7 rspcev P Poly 0 𝑝 P A = 0 a Poly 0 𝑝 a A = 0
9 4 5 8 syl2anc P Poly P 0 𝑝 A P A = 0 a Poly 0 𝑝 a A = 0
10 elqaa A 𝔸 A a Poly 0 𝑝 a A = 0
11 1 9 10 sylanbrc P Poly P 0 𝑝 A P A = 0 A 𝔸
12 dgraaval A 𝔸 deg 𝔸 A = sup a | b Poly 0 𝑝 deg b = a b A = 0 <
13 11 12 syl P Poly P 0 𝑝 A P A = 0 deg 𝔸 A = sup a | b Poly 0 𝑝 deg b = a b A = 0 <
14 ssrab2 a | b Poly 0 𝑝 deg b = a b A = 0
15 nnuz = 1
16 14 15 sseqtri a | b Poly 0 𝑝 deg b = a b A = 0 1
17 dgrnznn P Poly P 0 𝑝 A P A = 0 deg P
18 eqid deg P = deg P
19 5 18 jctil P Poly P 0 𝑝 A P A = 0 deg P = deg P P A = 0
20 fveqeq2 b = P deg b = deg P deg P = deg P
21 fveq1 b = P b A = P A
22 21 eqeq1d b = P b A = 0 P A = 0
23 20 22 anbi12d b = P deg b = deg P b A = 0 deg P = deg P P A = 0
24 23 rspcev P Poly 0 𝑝 deg P = deg P P A = 0 b Poly 0 𝑝 deg b = deg P b A = 0
25 4 19 24 syl2anc P Poly P 0 𝑝 A P A = 0 b Poly 0 𝑝 deg b = deg P b A = 0
26 eqeq2 a = deg P deg b = a deg b = deg P
27 26 anbi1d a = deg P deg b = a b A = 0 deg b = deg P b A = 0
28 27 rexbidv a = deg P b Poly 0 𝑝 deg b = a b A = 0 b Poly 0 𝑝 deg b = deg P b A = 0
29 28 elrab deg P a | b Poly 0 𝑝 deg b = a b A = 0 deg P b Poly 0 𝑝 deg b = deg P b A = 0
30 17 25 29 sylanbrc P Poly P 0 𝑝 A P A = 0 deg P a | b Poly 0 𝑝 deg b = a b A = 0
31 infssuzle a | b Poly 0 𝑝 deg b = a b A = 0 1 deg P a | b Poly 0 𝑝 deg b = a b A = 0 sup a | b Poly 0 𝑝 deg b = a b A = 0 < deg P
32 16 30 31 sylancr P Poly P 0 𝑝 A P A = 0 sup a | b Poly 0 𝑝 deg b = a b A = 0 < deg P
33 13 32 eqbrtrd P Poly P 0 𝑝 A P A = 0 deg 𝔸 A deg P