Step |
Hyp |
Ref |
Expression |
1 |
|
simprl |
⊢ ( ( ( 𝑃 ∈ ( Poly ‘ ℚ ) ∧ 𝑃 ≠ 0𝑝 ) ∧ ( 𝐴 ∈ ℂ ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → 𝐴 ∈ ℂ ) |
2 |
|
eldifsn |
⊢ ( 𝑃 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ↔ ( 𝑃 ∈ ( Poly ‘ ℚ ) ∧ 𝑃 ≠ 0𝑝 ) ) |
3 |
2
|
biimpri |
⊢ ( ( 𝑃 ∈ ( Poly ‘ ℚ ) ∧ 𝑃 ≠ 0𝑝 ) → 𝑃 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ) |
4 |
3
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( Poly ‘ ℚ ) ∧ 𝑃 ≠ 0𝑝 ) ∧ ( 𝐴 ∈ ℂ ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → 𝑃 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ) |
5 |
|
simprr |
⊢ ( ( ( 𝑃 ∈ ( Poly ‘ ℚ ) ∧ 𝑃 ≠ 0𝑝 ) ∧ ( 𝐴 ∈ ℂ ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → ( 𝑃 ‘ 𝐴 ) = 0 ) |
6 |
|
fveq1 |
⊢ ( 𝑎 = 𝑃 → ( 𝑎 ‘ 𝐴 ) = ( 𝑃 ‘ 𝐴 ) ) |
7 |
6
|
eqeq1d |
⊢ ( 𝑎 = 𝑃 → ( ( 𝑎 ‘ 𝐴 ) = 0 ↔ ( 𝑃 ‘ 𝐴 ) = 0 ) ) |
8 |
7
|
rspcev |
⊢ ( ( 𝑃 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) → ∃ 𝑎 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( 𝑎 ‘ 𝐴 ) = 0 ) |
9 |
4 5 8
|
syl2anc |
⊢ ( ( ( 𝑃 ∈ ( Poly ‘ ℚ ) ∧ 𝑃 ≠ 0𝑝 ) ∧ ( 𝐴 ∈ ℂ ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → ∃ 𝑎 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( 𝑎 ‘ 𝐴 ) = 0 ) |
10 |
|
elqaa |
⊢ ( 𝐴 ∈ 𝔸 ↔ ( 𝐴 ∈ ℂ ∧ ∃ 𝑎 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( 𝑎 ‘ 𝐴 ) = 0 ) ) |
11 |
1 9 10
|
sylanbrc |
⊢ ( ( ( 𝑃 ∈ ( Poly ‘ ℚ ) ∧ 𝑃 ≠ 0𝑝 ) ∧ ( 𝐴 ∈ ℂ ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → 𝐴 ∈ 𝔸 ) |
12 |
|
dgraaval |
⊢ ( 𝐴 ∈ 𝔸 → ( degAA ‘ 𝐴 ) = inf ( { 𝑎 ∈ ℕ ∣ ∃ 𝑏 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑏 ) = 𝑎 ∧ ( 𝑏 ‘ 𝐴 ) = 0 ) } , ℝ , < ) ) |
13 |
11 12
|
syl |
⊢ ( ( ( 𝑃 ∈ ( Poly ‘ ℚ ) ∧ 𝑃 ≠ 0𝑝 ) ∧ ( 𝐴 ∈ ℂ ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → ( degAA ‘ 𝐴 ) = inf ( { 𝑎 ∈ ℕ ∣ ∃ 𝑏 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑏 ) = 𝑎 ∧ ( 𝑏 ‘ 𝐴 ) = 0 ) } , ℝ , < ) ) |
14 |
|
ssrab2 |
⊢ { 𝑎 ∈ ℕ ∣ ∃ 𝑏 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑏 ) = 𝑎 ∧ ( 𝑏 ‘ 𝐴 ) = 0 ) } ⊆ ℕ |
15 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
16 |
14 15
|
sseqtri |
⊢ { 𝑎 ∈ ℕ ∣ ∃ 𝑏 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑏 ) = 𝑎 ∧ ( 𝑏 ‘ 𝐴 ) = 0 ) } ⊆ ( ℤ≥ ‘ 1 ) |
17 |
|
dgrnznn |
⊢ ( ( ( 𝑃 ∈ ( Poly ‘ ℚ ) ∧ 𝑃 ≠ 0𝑝 ) ∧ ( 𝐴 ∈ ℂ ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → ( deg ‘ 𝑃 ) ∈ ℕ ) |
18 |
|
eqid |
⊢ ( deg ‘ 𝑃 ) = ( deg ‘ 𝑃 ) |
19 |
5 18
|
jctil |
⊢ ( ( ( 𝑃 ∈ ( Poly ‘ ℚ ) ∧ 𝑃 ≠ 0𝑝 ) ∧ ( 𝐴 ∈ ℂ ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → ( ( deg ‘ 𝑃 ) = ( deg ‘ 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) |
20 |
|
fveqeq2 |
⊢ ( 𝑏 = 𝑃 → ( ( deg ‘ 𝑏 ) = ( deg ‘ 𝑃 ) ↔ ( deg ‘ 𝑃 ) = ( deg ‘ 𝑃 ) ) ) |
21 |
|
fveq1 |
⊢ ( 𝑏 = 𝑃 → ( 𝑏 ‘ 𝐴 ) = ( 𝑃 ‘ 𝐴 ) ) |
22 |
21
|
eqeq1d |
⊢ ( 𝑏 = 𝑃 → ( ( 𝑏 ‘ 𝐴 ) = 0 ↔ ( 𝑃 ‘ 𝐴 ) = 0 ) ) |
23 |
20 22
|
anbi12d |
⊢ ( 𝑏 = 𝑃 → ( ( ( deg ‘ 𝑏 ) = ( deg ‘ 𝑃 ) ∧ ( 𝑏 ‘ 𝐴 ) = 0 ) ↔ ( ( deg ‘ 𝑃 ) = ( deg ‘ 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) ) |
24 |
23
|
rspcev |
⊢ ( ( 𝑃 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ∧ ( ( deg ‘ 𝑃 ) = ( deg ‘ 𝑃 ) ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → ∃ 𝑏 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑏 ) = ( deg ‘ 𝑃 ) ∧ ( 𝑏 ‘ 𝐴 ) = 0 ) ) |
25 |
4 19 24
|
syl2anc |
⊢ ( ( ( 𝑃 ∈ ( Poly ‘ ℚ ) ∧ 𝑃 ≠ 0𝑝 ) ∧ ( 𝐴 ∈ ℂ ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → ∃ 𝑏 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑏 ) = ( deg ‘ 𝑃 ) ∧ ( 𝑏 ‘ 𝐴 ) = 0 ) ) |
26 |
|
eqeq2 |
⊢ ( 𝑎 = ( deg ‘ 𝑃 ) → ( ( deg ‘ 𝑏 ) = 𝑎 ↔ ( deg ‘ 𝑏 ) = ( deg ‘ 𝑃 ) ) ) |
27 |
26
|
anbi1d |
⊢ ( 𝑎 = ( deg ‘ 𝑃 ) → ( ( ( deg ‘ 𝑏 ) = 𝑎 ∧ ( 𝑏 ‘ 𝐴 ) = 0 ) ↔ ( ( deg ‘ 𝑏 ) = ( deg ‘ 𝑃 ) ∧ ( 𝑏 ‘ 𝐴 ) = 0 ) ) ) |
28 |
27
|
rexbidv |
⊢ ( 𝑎 = ( deg ‘ 𝑃 ) → ( ∃ 𝑏 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑏 ) = 𝑎 ∧ ( 𝑏 ‘ 𝐴 ) = 0 ) ↔ ∃ 𝑏 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑏 ) = ( deg ‘ 𝑃 ) ∧ ( 𝑏 ‘ 𝐴 ) = 0 ) ) ) |
29 |
28
|
elrab |
⊢ ( ( deg ‘ 𝑃 ) ∈ { 𝑎 ∈ ℕ ∣ ∃ 𝑏 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑏 ) = 𝑎 ∧ ( 𝑏 ‘ 𝐴 ) = 0 ) } ↔ ( ( deg ‘ 𝑃 ) ∈ ℕ ∧ ∃ 𝑏 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑏 ) = ( deg ‘ 𝑃 ) ∧ ( 𝑏 ‘ 𝐴 ) = 0 ) ) ) |
30 |
17 25 29
|
sylanbrc |
⊢ ( ( ( 𝑃 ∈ ( Poly ‘ ℚ ) ∧ 𝑃 ≠ 0𝑝 ) ∧ ( 𝐴 ∈ ℂ ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → ( deg ‘ 𝑃 ) ∈ { 𝑎 ∈ ℕ ∣ ∃ 𝑏 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑏 ) = 𝑎 ∧ ( 𝑏 ‘ 𝐴 ) = 0 ) } ) |
31 |
|
infssuzle |
⊢ ( ( { 𝑎 ∈ ℕ ∣ ∃ 𝑏 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑏 ) = 𝑎 ∧ ( 𝑏 ‘ 𝐴 ) = 0 ) } ⊆ ( ℤ≥ ‘ 1 ) ∧ ( deg ‘ 𝑃 ) ∈ { 𝑎 ∈ ℕ ∣ ∃ 𝑏 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑏 ) = 𝑎 ∧ ( 𝑏 ‘ 𝐴 ) = 0 ) } ) → inf ( { 𝑎 ∈ ℕ ∣ ∃ 𝑏 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑏 ) = 𝑎 ∧ ( 𝑏 ‘ 𝐴 ) = 0 ) } , ℝ , < ) ≤ ( deg ‘ 𝑃 ) ) |
32 |
16 30 31
|
sylancr |
⊢ ( ( ( 𝑃 ∈ ( Poly ‘ ℚ ) ∧ 𝑃 ≠ 0𝑝 ) ∧ ( 𝐴 ∈ ℂ ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → inf ( { 𝑎 ∈ ℕ ∣ ∃ 𝑏 ∈ ( ( Poly ‘ ℚ ) ∖ { 0𝑝 } ) ( ( deg ‘ 𝑏 ) = 𝑎 ∧ ( 𝑏 ‘ 𝐴 ) = 0 ) } , ℝ , < ) ≤ ( deg ‘ 𝑃 ) ) |
33 |
13 32
|
eqbrtrd |
⊢ ( ( ( 𝑃 ∈ ( Poly ‘ ℚ ) ∧ 𝑃 ≠ 0𝑝 ) ∧ ( 𝐴 ∈ ℂ ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → ( degAA ‘ 𝐴 ) ≤ ( deg ‘ 𝑃 ) ) |