Step |
Hyp |
Ref |
Expression |
1 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) ∧ 𝑃 ≠ 0𝑝 ) → ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) |
2 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) ∧ 𝑃 ≠ 0𝑝 ) → 𝑃 ∈ ( Poly ‘ ℚ ) ) |
3 |
|
dgrcl |
⊢ ( 𝑃 ∈ ( Poly ‘ ℚ ) → ( deg ‘ 𝑃 ) ∈ ℕ0 ) |
4 |
2 3
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) ∧ 𝑃 ≠ 0𝑝 ) → ( deg ‘ 𝑃 ) ∈ ℕ0 ) |
5 |
4
|
nn0red |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) ∧ 𝑃 ≠ 0𝑝 ) → ( deg ‘ 𝑃 ) ∈ ℝ ) |
6 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) ∧ 𝑃 ≠ 0𝑝 ) → 𝐴 ∈ 𝔸 ) |
7 |
|
dgraacl |
⊢ ( 𝐴 ∈ 𝔸 → ( degAA ‘ 𝐴 ) ∈ ℕ ) |
8 |
6 7
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) ∧ 𝑃 ≠ 0𝑝 ) → ( degAA ‘ 𝐴 ) ∈ ℕ ) |
9 |
8
|
nnred |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) ∧ 𝑃 ≠ 0𝑝 ) → ( degAA ‘ 𝐴 ) ∈ ℝ ) |
10 |
5 9
|
ltnled |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) ∧ 𝑃 ≠ 0𝑝 ) → ( ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ↔ ¬ ( degAA ‘ 𝐴 ) ≤ ( deg ‘ 𝑃 ) ) ) |
11 |
1 10
|
mpbid |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) ∧ 𝑃 ≠ 0𝑝 ) → ¬ ( degAA ‘ 𝐴 ) ≤ ( deg ‘ 𝑃 ) ) |
12 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) ∧ ( 𝑃 ≠ 0𝑝 ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → 𝑃 ∈ ( Poly ‘ ℚ ) ) |
13 |
|
simprl |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) ∧ ( 𝑃 ≠ 0𝑝 ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → 𝑃 ≠ 0𝑝 ) |
14 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) ∧ ( 𝑃 ≠ 0𝑝 ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → 𝐴 ∈ 𝔸 ) |
15 |
|
aacn |
⊢ ( 𝐴 ∈ 𝔸 → 𝐴 ∈ ℂ ) |
16 |
14 15
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) ∧ ( 𝑃 ≠ 0𝑝 ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → 𝐴 ∈ ℂ ) |
17 |
|
simprr |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) ∧ ( 𝑃 ≠ 0𝑝 ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → ( 𝑃 ‘ 𝐴 ) = 0 ) |
18 |
|
dgraaub |
⊢ ( ( ( 𝑃 ∈ ( Poly ‘ ℚ ) ∧ 𝑃 ≠ 0𝑝 ) ∧ ( 𝐴 ∈ ℂ ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → ( degAA ‘ 𝐴 ) ≤ ( deg ‘ 𝑃 ) ) |
19 |
12 13 16 17 18
|
syl22anc |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) ∧ ( 𝑃 ≠ 0𝑝 ∧ ( 𝑃 ‘ 𝐴 ) = 0 ) ) → ( degAA ‘ 𝐴 ) ≤ ( deg ‘ 𝑃 ) ) |
20 |
19
|
expr |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) ∧ 𝑃 ≠ 0𝑝 ) → ( ( 𝑃 ‘ 𝐴 ) = 0 → ( degAA ‘ 𝐴 ) ≤ ( deg ‘ 𝑃 ) ) ) |
21 |
11 20
|
mtod |
⊢ ( ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) ∧ 𝑃 ≠ 0𝑝 ) → ¬ ( 𝑃 ‘ 𝐴 ) = 0 ) |
22 |
21
|
ex |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) → ( 𝑃 ≠ 0𝑝 → ¬ ( 𝑃 ‘ 𝐴 ) = 0 ) ) |
23 |
22
|
necon4ad |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) → ( ( 𝑃 ‘ 𝐴 ) = 0 → 𝑃 = 0𝑝 ) ) |
24 |
|
0pval |
⊢ ( 𝐴 ∈ ℂ → ( 0𝑝 ‘ 𝐴 ) = 0 ) |
25 |
15 24
|
syl |
⊢ ( 𝐴 ∈ 𝔸 → ( 0𝑝 ‘ 𝐴 ) = 0 ) |
26 |
|
fveq1 |
⊢ ( 𝑃 = 0𝑝 → ( 𝑃 ‘ 𝐴 ) = ( 0𝑝 ‘ 𝐴 ) ) |
27 |
26
|
eqeq1d |
⊢ ( 𝑃 = 0𝑝 → ( ( 𝑃 ‘ 𝐴 ) = 0 ↔ ( 0𝑝 ‘ 𝐴 ) = 0 ) ) |
28 |
25 27
|
syl5ibrcom |
⊢ ( 𝐴 ∈ 𝔸 → ( 𝑃 = 0𝑝 → ( 𝑃 ‘ 𝐴 ) = 0 ) ) |
29 |
28
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) → ( 𝑃 = 0𝑝 → ( 𝑃 ‘ 𝐴 ) = 0 ) ) |
30 |
23 29
|
impbid |
⊢ ( ( 𝐴 ∈ 𝔸 ∧ 𝑃 ∈ ( Poly ‘ ℚ ) ∧ ( deg ‘ 𝑃 ) < ( degAA ‘ 𝐴 ) ) → ( ( 𝑃 ‘ 𝐴 ) = 0 ↔ 𝑃 = 0𝑝 ) ) |