Step |
Hyp |
Ref |
Expression |
1 |
|
qsscn |
|- QQ C_ CC |
2 |
|
eldifi |
|- ( a e. ( ( Poly ` QQ ) \ { 0p } ) -> a e. ( Poly ` QQ ) ) |
3 |
2
|
ad2antlr |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> a e. ( Poly ` QQ ) ) |
4 |
|
zssq |
|- ZZ C_ QQ |
5 |
|
0z |
|- 0 e. ZZ |
6 |
4 5
|
sselii |
|- 0 e. QQ |
7 |
|
eqid |
|- ( coeff ` a ) = ( coeff ` a ) |
8 |
7
|
coef2 |
|- ( ( a e. ( Poly ` QQ ) /\ 0 e. QQ ) -> ( coeff ` a ) : NN0 --> QQ ) |
9 |
3 6 8
|
sylancl |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( coeff ` a ) : NN0 --> QQ ) |
10 |
|
dgrcl |
|- ( a e. ( Poly ` QQ ) -> ( deg ` a ) e. NN0 ) |
11 |
3 10
|
syl |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( deg ` a ) e. NN0 ) |
12 |
9 11
|
ffvelrnd |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( ( coeff ` a ) ` ( deg ` a ) ) e. QQ ) |
13 |
|
eldifsni |
|- ( a e. ( ( Poly ` QQ ) \ { 0p } ) -> a =/= 0p ) |
14 |
13
|
ad2antlr |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> a =/= 0p ) |
15 |
|
eqid |
|- ( deg ` a ) = ( deg ` a ) |
16 |
15 7
|
dgreq0 |
|- ( a e. ( Poly ` QQ ) -> ( a = 0p <-> ( ( coeff ` a ) ` ( deg ` a ) ) = 0 ) ) |
17 |
16
|
necon3bid |
|- ( a e. ( Poly ` QQ ) -> ( a =/= 0p <-> ( ( coeff ` a ) ` ( deg ` a ) ) =/= 0 ) ) |
18 |
3 17
|
syl |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( a =/= 0p <-> ( ( coeff ` a ) ` ( deg ` a ) ) =/= 0 ) ) |
19 |
14 18
|
mpbid |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( ( coeff ` a ) ` ( deg ` a ) ) =/= 0 ) |
20 |
|
qreccl |
|- ( ( ( ( coeff ` a ) ` ( deg ` a ) ) e. QQ /\ ( ( coeff ` a ) ` ( deg ` a ) ) =/= 0 ) -> ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) e. QQ ) |
21 |
12 19 20
|
syl2anc |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) e. QQ ) |
22 |
|
plyconst |
|- ( ( QQ C_ CC /\ ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) e. QQ ) -> ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) e. ( Poly ` QQ ) ) |
23 |
1 21 22
|
sylancr |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) e. ( Poly ` QQ ) ) |
24 |
|
simpl |
|- ( ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) -> ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) e. ( Poly ` QQ ) ) |
25 |
|
simpr |
|- ( ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) -> a e. ( Poly ` QQ ) ) |
26 |
|
qaddcl |
|- ( ( b e. QQ /\ c e. QQ ) -> ( b + c ) e. QQ ) |
27 |
26
|
adantl |
|- ( ( ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) /\ ( b e. QQ /\ c e. QQ ) ) -> ( b + c ) e. QQ ) |
28 |
|
qmulcl |
|- ( ( b e. QQ /\ c e. QQ ) -> ( b x. c ) e. QQ ) |
29 |
28
|
adantl |
|- ( ( ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) /\ ( b e. QQ /\ c e. QQ ) ) -> ( b x. c ) e. QQ ) |
30 |
24 25 27 29
|
plymul |
|- ( ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) -> ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) e. ( Poly ` QQ ) ) |
31 |
23 3 30
|
syl2anc |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) e. ( Poly ` QQ ) ) |
32 |
7
|
coef3 |
|- ( a e. ( Poly ` QQ ) -> ( coeff ` a ) : NN0 --> CC ) |
33 |
3 32
|
syl |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( coeff ` a ) : NN0 --> CC ) |
34 |
33 11
|
ffvelrnd |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( ( coeff ` a ) ` ( deg ` a ) ) e. CC ) |
35 |
34 19
|
reccld |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) e. CC ) |
36 |
34 19
|
recne0d |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) =/= 0 ) |
37 |
|
dgrmulc |
|- ( ( ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) e. CC /\ ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) =/= 0 /\ a e. ( Poly ` QQ ) ) -> ( deg ` ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ) = ( deg ` a ) ) |
38 |
35 36 3 37
|
syl3anc |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( deg ` ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ) = ( deg ` a ) ) |
39 |
|
simprl |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( deg ` a ) = ( degAA ` A ) ) |
40 |
38 39
|
eqtrd |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( deg ` ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ) = ( degAA ` A ) ) |
41 |
|
aacn |
|- ( A e. AA -> A e. CC ) |
42 |
41
|
ad2antrr |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> A e. CC ) |
43 |
|
ovex |
|- ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) e. _V |
44 |
|
fnconstg |
|- ( ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) e. _V -> ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) Fn CC ) |
45 |
43 44
|
mp1i |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) Fn CC ) |
46 |
|
plyf |
|- ( a e. ( Poly ` QQ ) -> a : CC --> CC ) |
47 |
|
ffn |
|- ( a : CC --> CC -> a Fn CC ) |
48 |
3 46 47
|
3syl |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> a Fn CC ) |
49 |
|
cnex |
|- CC e. _V |
50 |
49
|
a1i |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> CC e. _V ) |
51 |
|
inidm |
|- ( CC i^i CC ) = CC |
52 |
43
|
fvconst2 |
|- ( A e. CC -> ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) ` A ) = ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) ) |
53 |
52
|
adantl |
|- ( ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) /\ A e. CC ) -> ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) ` A ) = ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) ) |
54 |
|
simplrr |
|- ( ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) /\ A e. CC ) -> ( a ` A ) = 0 ) |
55 |
45 48 50 50 51 53 54
|
ofval |
|- ( ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) /\ A e. CC ) -> ( ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ` A ) = ( ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) x. 0 ) ) |
56 |
42 55
|
mpdan |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ` A ) = ( ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) x. 0 ) ) |
57 |
35
|
mul01d |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) x. 0 ) = 0 ) |
58 |
56 57
|
eqtrd |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ` A ) = 0 ) |
59 |
|
coemulc |
|- ( ( ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) e. CC /\ a e. ( Poly ` QQ ) ) -> ( coeff ` ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ) = ( ( NN0 X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. ( coeff ` a ) ) ) |
60 |
35 3 59
|
syl2anc |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( coeff ` ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ) = ( ( NN0 X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. ( coeff ` a ) ) ) |
61 |
60
|
fveq1d |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( ( coeff ` ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ) ` ( degAA ` A ) ) = ( ( ( NN0 X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. ( coeff ` a ) ) ` ( degAA ` A ) ) ) |
62 |
|
dgraacl |
|- ( A e. AA -> ( degAA ` A ) e. NN ) |
63 |
62
|
ad2antrr |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( degAA ` A ) e. NN ) |
64 |
63
|
nnnn0d |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( degAA ` A ) e. NN0 ) |
65 |
|
fnconstg |
|- ( ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) e. _V -> ( NN0 X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) Fn NN0 ) |
66 |
43 65
|
mp1i |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( NN0 X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) Fn NN0 ) |
67 |
33
|
ffnd |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( coeff ` a ) Fn NN0 ) |
68 |
|
nn0ex |
|- NN0 e. _V |
69 |
68
|
a1i |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> NN0 e. _V ) |
70 |
|
inidm |
|- ( NN0 i^i NN0 ) = NN0 |
71 |
43
|
fvconst2 |
|- ( ( degAA ` A ) e. NN0 -> ( ( NN0 X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) ` ( degAA ` A ) ) = ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) ) |
72 |
71
|
adantl |
|- ( ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) /\ ( degAA ` A ) e. NN0 ) -> ( ( NN0 X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) ` ( degAA ` A ) ) = ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) ) |
73 |
|
simplrl |
|- ( ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) /\ ( degAA ` A ) e. NN0 ) -> ( deg ` a ) = ( degAA ` A ) ) |
74 |
73
|
eqcomd |
|- ( ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) /\ ( degAA ` A ) e. NN0 ) -> ( degAA ` A ) = ( deg ` a ) ) |
75 |
74
|
fveq2d |
|- ( ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) /\ ( degAA ` A ) e. NN0 ) -> ( ( coeff ` a ) ` ( degAA ` A ) ) = ( ( coeff ` a ) ` ( deg ` a ) ) ) |
76 |
66 67 69 69 70 72 75
|
ofval |
|- ( ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) /\ ( degAA ` A ) e. NN0 ) -> ( ( ( NN0 X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. ( coeff ` a ) ) ` ( degAA ` A ) ) = ( ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) x. ( ( coeff ` a ) ` ( deg ` a ) ) ) ) |
77 |
64 76
|
mpdan |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( ( ( NN0 X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. ( coeff ` a ) ) ` ( degAA ` A ) ) = ( ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) x. ( ( coeff ` a ) ` ( deg ` a ) ) ) ) |
78 |
34 19
|
recid2d |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) x. ( ( coeff ` a ) ` ( deg ` a ) ) ) = 1 ) |
79 |
61 77 78
|
3eqtrd |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> ( ( coeff ` ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ) ` ( degAA ` A ) ) = 1 ) |
80 |
|
fveqeq2 |
|- ( p = ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) -> ( ( deg ` p ) = ( degAA ` A ) <-> ( deg ` ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ) = ( degAA ` A ) ) ) |
81 |
|
fveq1 |
|- ( p = ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) -> ( p ` A ) = ( ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ` A ) ) |
82 |
81
|
eqeq1d |
|- ( p = ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) -> ( ( p ` A ) = 0 <-> ( ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ` A ) = 0 ) ) |
83 |
|
fveq2 |
|- ( p = ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) -> ( coeff ` p ) = ( coeff ` ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ) ) |
84 |
83
|
fveq1d |
|- ( p = ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) -> ( ( coeff ` p ) ` ( degAA ` A ) ) = ( ( coeff ` ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ) ` ( degAA ` A ) ) ) |
85 |
84
|
eqeq1d |
|- ( p = ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) -> ( ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 <-> ( ( coeff ` ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ) ` ( degAA ` A ) ) = 1 ) ) |
86 |
80 82 85
|
3anbi123d |
|- ( p = ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) -> ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) <-> ( ( deg ` ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ) = ( degAA ` A ) /\ ( ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ` A ) = 0 /\ ( ( coeff ` ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ) ` ( degAA ` A ) ) = 1 ) ) ) |
87 |
86
|
rspcev |
|- ( ( ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) e. ( Poly ` QQ ) /\ ( ( deg ` ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ) = ( degAA ` A ) /\ ( ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ` A ) = 0 /\ ( ( coeff ` ( ( CC X. { ( 1 / ( ( coeff ` a ) ` ( deg ` a ) ) ) } ) oF x. a ) ) ` ( degAA ` A ) ) = 1 ) ) -> E. p e. ( Poly ` QQ ) ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) ) |
88 |
31 40 58 79 87
|
syl13anc |
|- ( ( ( A e. AA /\ a e. ( ( Poly ` QQ ) \ { 0p } ) ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) -> E. p e. ( Poly ` QQ ) ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) ) |
89 |
|
dgraalem |
|- ( A e. AA -> ( ( degAA ` A ) e. NN /\ E. a e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) ) |
90 |
89
|
simprd |
|- ( A e. AA -> E. a e. ( ( Poly ` QQ ) \ { 0p } ) ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 ) ) |
91 |
88 90
|
r19.29a |
|- ( A e. AA -> E. p e. ( Poly ` QQ ) ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) ) |
92 |
|
simp2 |
|- ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) -> ( p ` A ) = 0 ) |
93 |
|
simp2 |
|- ( ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) -> ( a ` A ) = 0 ) |
94 |
92 93
|
anim12i |
|- ( ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) -> ( ( p ` A ) = 0 /\ ( a ` A ) = 0 ) ) |
95 |
|
plyf |
|- ( p e. ( Poly ` QQ ) -> p : CC --> CC ) |
96 |
95
|
ffnd |
|- ( p e. ( Poly ` QQ ) -> p Fn CC ) |
97 |
96
|
ad2antrr |
|- ( ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) /\ ( ( p ` A ) = 0 /\ ( a ` A ) = 0 ) ) -> p Fn CC ) |
98 |
46
|
ffnd |
|- ( a e. ( Poly ` QQ ) -> a Fn CC ) |
99 |
98
|
ad2antlr |
|- ( ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) /\ ( ( p ` A ) = 0 /\ ( a ` A ) = 0 ) ) -> a Fn CC ) |
100 |
49
|
a1i |
|- ( ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) /\ ( ( p ` A ) = 0 /\ ( a ` A ) = 0 ) ) -> CC e. _V ) |
101 |
|
simplrl |
|- ( ( ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) /\ ( ( p ` A ) = 0 /\ ( a ` A ) = 0 ) ) /\ A e. CC ) -> ( p ` A ) = 0 ) |
102 |
|
simplrr |
|- ( ( ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) /\ ( ( p ` A ) = 0 /\ ( a ` A ) = 0 ) ) /\ A e. CC ) -> ( a ` A ) = 0 ) |
103 |
97 99 100 100 51 101 102
|
ofval |
|- ( ( ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) /\ ( ( p ` A ) = 0 /\ ( a ` A ) = 0 ) ) /\ A e. CC ) -> ( ( p oF - a ) ` A ) = ( 0 - 0 ) ) |
104 |
41 103
|
sylan2 |
|- ( ( ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) /\ ( ( p ` A ) = 0 /\ ( a ` A ) = 0 ) ) /\ A e. AA ) -> ( ( p oF - a ) ` A ) = ( 0 - 0 ) ) |
105 |
|
0m0e0 |
|- ( 0 - 0 ) = 0 |
106 |
104 105
|
eqtrdi |
|- ( ( ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) /\ ( ( p ` A ) = 0 /\ ( a ` A ) = 0 ) ) /\ A e. AA ) -> ( ( p oF - a ) ` A ) = 0 ) |
107 |
106
|
ex |
|- ( ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) /\ ( ( p ` A ) = 0 /\ ( a ` A ) = 0 ) ) -> ( A e. AA -> ( ( p oF - a ) ` A ) = 0 ) ) |
108 |
94 107
|
sylan2 |
|- ( ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( A e. AA -> ( ( p oF - a ) ` A ) = 0 ) ) |
109 |
108
|
com12 |
|- ( A e. AA -> ( ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( ( p oF - a ) ` A ) = 0 ) ) |
110 |
109
|
impl |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( ( p oF - a ) ` A ) = 0 ) |
111 |
|
simpll |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> A e. AA ) |
112 |
|
simpl |
|- ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) -> p e. ( Poly ` QQ ) ) |
113 |
|
simpr |
|- ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) -> a e. ( Poly ` QQ ) ) |
114 |
26
|
adantl |
|- ( ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) /\ ( b e. QQ /\ c e. QQ ) ) -> ( b + c ) e. QQ ) |
115 |
28
|
adantl |
|- ( ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) /\ ( b e. QQ /\ c e. QQ ) ) -> ( b x. c ) e. QQ ) |
116 |
|
1z |
|- 1 e. ZZ |
117 |
|
zq |
|- ( 1 e. ZZ -> 1 e. QQ ) |
118 |
|
qnegcl |
|- ( 1 e. QQ -> -u 1 e. QQ ) |
119 |
116 117 118
|
mp2b |
|- -u 1 e. QQ |
120 |
119
|
a1i |
|- ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) -> -u 1 e. QQ ) |
121 |
112 113 114 115 120
|
plysub |
|- ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) -> ( p oF - a ) e. ( Poly ` QQ ) ) |
122 |
121
|
ad2antlr |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( p oF - a ) e. ( Poly ` QQ ) ) |
123 |
|
simplrl |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> p e. ( Poly ` QQ ) ) |
124 |
|
simplrr |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> a e. ( Poly ` QQ ) ) |
125 |
|
simprr1 |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( deg ` a ) = ( degAA ` A ) ) |
126 |
|
simprl1 |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( deg ` p ) = ( degAA ` A ) ) |
127 |
125 126
|
eqtr4d |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( deg ` a ) = ( deg ` p ) ) |
128 |
62
|
ad2antrr |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( degAA ` A ) e. NN ) |
129 |
126 128
|
eqeltrd |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( deg ` p ) e. NN ) |
130 |
|
simprl3 |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) |
131 |
126
|
fveq2d |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( ( coeff ` p ) ` ( deg ` p ) ) = ( ( coeff ` p ) ` ( degAA ` A ) ) ) |
132 |
126
|
fveq2d |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( ( coeff ` a ) ` ( deg ` p ) ) = ( ( coeff ` a ) ` ( degAA ` A ) ) ) |
133 |
|
simprr3 |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) |
134 |
132 133
|
eqtrd |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( ( coeff ` a ) ` ( deg ` p ) ) = 1 ) |
135 |
130 131 134
|
3eqtr4d |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( ( coeff ` p ) ` ( deg ` p ) ) = ( ( coeff ` a ) ` ( deg ` p ) ) ) |
136 |
|
eqid |
|- ( deg ` p ) = ( deg ` p ) |
137 |
136
|
dgrsub2 |
|- ( ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) /\ ( ( deg ` a ) = ( deg ` p ) /\ ( deg ` p ) e. NN /\ ( ( coeff ` p ) ` ( deg ` p ) ) = ( ( coeff ` a ) ` ( deg ` p ) ) ) ) -> ( deg ` ( p oF - a ) ) < ( deg ` p ) ) |
138 |
123 124 127 129 135 137
|
syl23anc |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( deg ` ( p oF - a ) ) < ( deg ` p ) ) |
139 |
138 126
|
breqtrd |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( deg ` ( p oF - a ) ) < ( degAA ` A ) ) |
140 |
|
dgraa0p |
|- ( ( A e. AA /\ ( p oF - a ) e. ( Poly ` QQ ) /\ ( deg ` ( p oF - a ) ) < ( degAA ` A ) ) -> ( ( ( p oF - a ) ` A ) = 0 <-> ( p oF - a ) = 0p ) ) |
141 |
111 122 139 140
|
syl3anc |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( ( ( p oF - a ) ` A ) = 0 <-> ( p oF - a ) = 0p ) ) |
142 |
110 141
|
mpbid |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( p oF - a ) = 0p ) |
143 |
|
df-0p |
|- 0p = ( CC X. { 0 } ) |
144 |
142 143
|
eqtrdi |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( p oF - a ) = ( CC X. { 0 } ) ) |
145 |
|
ofsubeq0 |
|- ( ( CC e. _V /\ p : CC --> CC /\ a : CC --> CC ) -> ( ( p oF - a ) = ( CC X. { 0 } ) <-> p = a ) ) |
146 |
49 145
|
mp3an1 |
|- ( ( p : CC --> CC /\ a : CC --> CC ) -> ( ( p oF - a ) = ( CC X. { 0 } ) <-> p = a ) ) |
147 |
95 46 146
|
syl2an |
|- ( ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) -> ( ( p oF - a ) = ( CC X. { 0 } ) <-> p = a ) ) |
148 |
147
|
ad2antlr |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> ( ( p oF - a ) = ( CC X. { 0 } ) <-> p = a ) ) |
149 |
144 148
|
mpbid |
|- ( ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) /\ ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) -> p = a ) |
150 |
149
|
ex |
|- ( ( A e. AA /\ ( p e. ( Poly ` QQ ) /\ a e. ( Poly ` QQ ) ) ) -> ( ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) -> p = a ) ) |
151 |
150
|
ralrimivva |
|- ( A e. AA -> A. p e. ( Poly ` QQ ) A. a e. ( Poly ` QQ ) ( ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) -> p = a ) ) |
152 |
|
fveqeq2 |
|- ( p = a -> ( ( deg ` p ) = ( degAA ` A ) <-> ( deg ` a ) = ( degAA ` A ) ) ) |
153 |
|
fveq1 |
|- ( p = a -> ( p ` A ) = ( a ` A ) ) |
154 |
153
|
eqeq1d |
|- ( p = a -> ( ( p ` A ) = 0 <-> ( a ` A ) = 0 ) ) |
155 |
|
fveq2 |
|- ( p = a -> ( coeff ` p ) = ( coeff ` a ) ) |
156 |
155
|
fveq1d |
|- ( p = a -> ( ( coeff ` p ) ` ( degAA ` A ) ) = ( ( coeff ` a ) ` ( degAA ` A ) ) ) |
157 |
156
|
eqeq1d |
|- ( p = a -> ( ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 <-> ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) |
158 |
152 154 157
|
3anbi123d |
|- ( p = a -> ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) <-> ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) ) |
159 |
158
|
reu4 |
|- ( E! p e. ( Poly ` QQ ) ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) <-> ( E. p e. ( Poly ` QQ ) ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ A. p e. ( Poly ` QQ ) A. a e. ( Poly ` QQ ) ( ( ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) /\ ( ( deg ` a ) = ( degAA ` A ) /\ ( a ` A ) = 0 /\ ( ( coeff ` a ) ` ( degAA ` A ) ) = 1 ) ) -> p = a ) ) ) |
160 |
91 151 159
|
sylanbrc |
|- ( A e. AA -> E! p e. ( Poly ` QQ ) ( ( deg ` p ) = ( degAA ` A ) /\ ( p ` A ) = 0 /\ ( ( coeff ` p ) ` ( degAA ` A ) ) = 1 ) ) |