Description: Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007) (Proof shortened by Andrew Salmon, 26-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | disjne | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → 𝐶 ≠ 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ ↔ ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ) | |
| 2 | eleq1 | ⊢ ( 𝑥 = 𝐶 → ( 𝑥 ∈ 𝐵 ↔ 𝐶 ∈ 𝐵 ) ) | |
| 3 | 2 | notbid | ⊢ ( 𝑥 = 𝐶 → ( ¬ 𝑥 ∈ 𝐵 ↔ ¬ 𝐶 ∈ 𝐵 ) ) |
| 4 | 3 | rspccva | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ¬ 𝐶 ∈ 𝐵 ) |
| 5 | eleq1a | ⊢ ( 𝐷 ∈ 𝐵 → ( 𝐶 = 𝐷 → 𝐶 ∈ 𝐵 ) ) | |
| 6 | 5 | necon3bd | ⊢ ( 𝐷 ∈ 𝐵 → ( ¬ 𝐶 ∈ 𝐵 → 𝐶 ≠ 𝐷 ) ) |
| 7 | 4 6 | syl5com | ⊢ ( ( ∀ 𝑥 ∈ 𝐴 ¬ 𝑥 ∈ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → ( 𝐷 ∈ 𝐵 → 𝐶 ≠ 𝐷 ) ) |
| 8 | 1 7 | sylanb | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐶 ∈ 𝐴 ) → ( 𝐷 ∈ 𝐵 → 𝐶 ≠ 𝐷 ) ) |
| 9 | 8 | 3impia | ⊢ ( ( ( 𝐴 ∩ 𝐵 ) = ∅ ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵 ) → 𝐶 ≠ 𝐷 ) |