Metamath Proof Explorer


Theorem disjne

Description: Members of disjoint sets are not equal. (Contributed by NM, 28-Mar-2007) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion disjne AB=CADBCD

Proof

Step Hyp Ref Expression
1 disj AB=xA¬xB
2 eleq1 x=CxBCB
3 2 notbid x=C¬xB¬CB
4 3 rspccva xA¬xBCA¬CB
5 eleq1a DBC=DCB
6 5 necon3bd DB¬CBCD
7 4 6 syl5com xA¬xBCADBCD
8 1 7 sylanb AB=CADBCD
9 8 3impia AB=CADBCD