Metamath Proof Explorer


Theorem disjeq0

Description: Two disjoint sets are equal iff both are empty. (Contributed by AV, 19-Jun-2022)

Ref Expression
Assertion disjeq0 AB=A=BA=B=

Proof

Step Hyp Ref Expression
1 ineq1 A=BAB=BB
2 inidm BB=B
3 1 2 eqtrdi A=BAB=B
4 3 eqeq1d A=BAB=B=
5 eqtr A=BB=A=
6 simpr A=BB=B=
7 5 6 jca A=BB=A=B=
8 7 ex A=BB=A=B=
9 4 8 sylbid A=BAB=A=B=
10 9 com12 AB=A=BA=B=
11 eqtr3 A=B=A=B
12 10 11 impbid1 AB=A=BA=B=