Metamath Proof Explorer


Theorem disjssd

Description: Subclass theorem for disjoints, deduction version. (Contributed by Peter Mazsa, 28-Sep-2021)

Ref Expression
Hypothesis disjssd.1 ( 𝜑𝐴𝐵 )
Assertion disjssd ( 𝜑 → ( Disj 𝐵 → Disj 𝐴 ) )

Proof

Step Hyp Ref Expression
1 disjssd.1 ( 𝜑𝐴𝐵 )
2 disjss ( 𝐴𝐵 → ( Disj 𝐵 → Disj 𝐴 ) )
3 1 2 syl ( 𝜑 → ( Disj 𝐵 → Disj 𝐴 ) )