Metamath Proof Explorer
Description: The ratio of nonnegative and positive numbers is nonnegative.
(Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
rpgecld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
rpgecld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
|
|
divge0d.3 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
|
Assertion |
divge0d |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 / 𝐵 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
rpgecld.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
2 |
|
rpgecld.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ+ ) |
3 |
|
divge0d.3 |
⊢ ( 𝜑 → 0 ≤ 𝐴 ) |
4 |
2
|
rpregt0d |
⊢ ( 𝜑 → ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) |
5 |
|
divge0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 ≤ ( 𝐴 / 𝐵 ) ) |
6 |
1 3 4 5
|
syl21anc |
⊢ ( 𝜑 → 0 ≤ ( 𝐴 / 𝐵 ) ) |