Description: A weak cancellation law for surreal division. (Contributed by Scott Fenton, 13-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | divscan2wd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| divscan2wd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | ||
| divscan2wd.3 | ⊢ ( 𝜑 → 𝐵 ≠ 0s ) | ||
| divscan2wd.4 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 𝐵 ·s 𝑥 ) = 1s ) | ||
| Assertion | divscan1wd | ⊢ ( 𝜑 → ( ( 𝐴 /su 𝐵 ) ·s 𝐵 ) = 𝐴 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | divscan2wd.1 | ⊢ ( 𝜑 → 𝐴 ∈ No ) | |
| 2 | divscan2wd.2 | ⊢ ( 𝜑 → 𝐵 ∈ No ) | |
| 3 | divscan2wd.3 | ⊢ ( 𝜑 → 𝐵 ≠ 0s ) | |
| 4 | divscan2wd.4 | ⊢ ( 𝜑 → ∃ 𝑥 ∈ No ( 𝐵 ·s 𝑥 ) = 1s ) | |
| 5 | 1 2 3 4 | divsclwd | ⊢ ( 𝜑 → ( 𝐴 /su 𝐵 ) ∈ No ) | 
| 6 | 5 2 | mulscomd | ⊢ ( 𝜑 → ( ( 𝐴 /su 𝐵 ) ·s 𝐵 ) = ( 𝐵 ·s ( 𝐴 /su 𝐵 ) ) ) | 
| 7 | 1 2 3 4 | divscan2wd | ⊢ ( 𝜑 → ( 𝐵 ·s ( 𝐴 /su 𝐵 ) ) = 𝐴 ) | 
| 8 | 6 7 | eqtrd | ⊢ ( 𝜑 → ( ( 𝐴 /su 𝐵 ) ·s 𝐵 ) = 𝐴 ) |