Metamath Proof Explorer
Description: Alternate proof of dju1p1e2 . (Contributed by Mario Carneiro, 29-Apr-2015) (Proof modification is discouraged.)
(New usage is discouraged.)
|
|
Ref |
Expression |
|
Assertion |
dju1p1e2ALT |
⊢ ( 1o ⊔ 1o ) ≈ 2o |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
1on |
⊢ 1o ∈ On |
2 |
1
|
onordi |
⊢ Ord 1o |
3 |
|
ordirr |
⊢ ( Ord 1o → ¬ 1o ∈ 1o ) |
4 |
2 3
|
ax-mp |
⊢ ¬ 1o ∈ 1o |
5 |
|
dju1en |
⊢ ( ( 1o ∈ On ∧ ¬ 1o ∈ 1o ) → ( 1o ⊔ 1o ) ≈ suc 1o ) |
6 |
1 4 5
|
mp2an |
⊢ ( 1o ⊔ 1o ) ≈ suc 1o |
7 |
|
df-2o |
⊢ 2o = suc 1o |
8 |
6 7
|
breqtrri |
⊢ ( 1o ⊔ 1o ) ≈ 2o |