Metamath Proof Explorer


Theorem dju1p1e2ALT

Description: Alternate proof of dju1p1e2 . (Contributed by Mario Carneiro, 29-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dju1p1e2ALT ( 1o ⊔ 1o ) ≈ 2o

Proof

Step Hyp Ref Expression
1 1on 1o ∈ On
2 1 onordi Ord 1o
3 ordirr ( Ord 1o → ¬ 1o ∈ 1o )
4 2 3 ax-mp ¬ 1o ∈ 1o
5 dju1en ( ( 1o ∈ On ∧ ¬ 1o ∈ 1o ) → ( 1o ⊔ 1o ) ≈ suc 1o )
6 1 4 5 mp2an ( 1o ⊔ 1o ) ≈ suc 1o
7 df-2o 2o = suc 1o
8 6 7 breqtrri ( 1o ⊔ 1o ) ≈ 2o