Metamath Proof Explorer


Theorem dju1p1e2ALT

Description: Alternate proof of dju1p1e2 . (Contributed by Mario Carneiro, 29-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dju1p1e2ALT
|- ( 1o |_| 1o ) ~~ 2o

Proof

Step Hyp Ref Expression
1 1on
 |-  1o e. On
2 1 onordi
 |-  Ord 1o
3 ordirr
 |-  ( Ord 1o -> -. 1o e. 1o )
4 2 3 ax-mp
 |-  -. 1o e. 1o
5 dju1en
 |-  ( ( 1o e. On /\ -. 1o e. 1o ) -> ( 1o |_| 1o ) ~~ suc 1o )
6 1 4 5 mp2an
 |-  ( 1o |_| 1o ) ~~ suc 1o
7 df-2o
 |-  2o = suc 1o
8 6 7 breqtrri
 |-  ( 1o |_| 1o ) ~~ 2o