Metamath Proof Explorer


Theorem djulf1o

Description: The left injection function on all sets is one to one and onto. (Contributed by Jim Kingdon, 22-Jun-2022)

Ref Expression
Assertion djulf1o inl : V –1-1-onto→ ( { ∅ } × V )

Proof

Step Hyp Ref Expression
1 df-inl inl = ( 𝑥 ∈ V ↦ ⟨ ∅ , 𝑥 ⟩ )
2 0ex ∅ ∈ V
3 2 snid ∅ ∈ { ∅ }
4 opelxpi ( ( ∅ ∈ { ∅ } ∧ 𝑥 ∈ V ) → ⟨ ∅ , 𝑥 ⟩ ∈ ( { ∅ } × V ) )
5 3 4 mpan ( 𝑥 ∈ V → ⟨ ∅ , 𝑥 ⟩ ∈ ( { ∅ } × V ) )
6 5 adantl ( ( ⊤ ∧ 𝑥 ∈ V ) → ⟨ ∅ , 𝑥 ⟩ ∈ ( { ∅ } × V ) )
7 fvexd ( ( ⊤ ∧ 𝑦 ∈ ( { ∅ } × V ) ) → ( 2nd𝑦 ) ∈ V )
8 1st2nd2 ( 𝑦 ∈ ( { ∅ } × V ) → 𝑦 = ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ )
9 xp1st ( 𝑦 ∈ ( { ∅ } × V ) → ( 1st𝑦 ) ∈ { ∅ } )
10 elsni ( ( 1st𝑦 ) ∈ { ∅ } → ( 1st𝑦 ) = ∅ )
11 9 10 syl ( 𝑦 ∈ ( { ∅ } × V ) → ( 1st𝑦 ) = ∅ )
12 11 opeq1d ( 𝑦 ∈ ( { ∅ } × V ) → ⟨ ( 1st𝑦 ) , ( 2nd𝑦 ) ⟩ = ⟨ ∅ , ( 2nd𝑦 ) ⟩ )
13 8 12 eqtrd ( 𝑦 ∈ ( { ∅ } × V ) → 𝑦 = ⟨ ∅ , ( 2nd𝑦 ) ⟩ )
14 13 eqeq2d ( 𝑦 ∈ ( { ∅ } × V ) → ( ⟨ ∅ , 𝑥 ⟩ = 𝑦 ↔ ⟨ ∅ , 𝑥 ⟩ = ⟨ ∅ , ( 2nd𝑦 ) ⟩ ) )
15 eqcom ( ⟨ ∅ , 𝑥 ⟩ = 𝑦𝑦 = ⟨ ∅ , 𝑥 ⟩ )
16 eqid ∅ = ∅
17 vex 𝑥 ∈ V
18 2 17 opth ( ⟨ ∅ , 𝑥 ⟩ = ⟨ ∅ , ( 2nd𝑦 ) ⟩ ↔ ( ∅ = ∅ ∧ 𝑥 = ( 2nd𝑦 ) ) )
19 16 18 mpbiran ( ⟨ ∅ , 𝑥 ⟩ = ⟨ ∅ , ( 2nd𝑦 ) ⟩ ↔ 𝑥 = ( 2nd𝑦 ) )
20 14 15 19 3bitr3g ( 𝑦 ∈ ( { ∅ } × V ) → ( 𝑦 = ⟨ ∅ , 𝑥 ⟩ ↔ 𝑥 = ( 2nd𝑦 ) ) )
21 20 bicomd ( 𝑦 ∈ ( { ∅ } × V ) → ( 𝑥 = ( 2nd𝑦 ) ↔ 𝑦 = ⟨ ∅ , 𝑥 ⟩ ) )
22 21 ad2antll ( ( ⊤ ∧ ( 𝑥 ∈ V ∧ 𝑦 ∈ ( { ∅ } × V ) ) ) → ( 𝑥 = ( 2nd𝑦 ) ↔ 𝑦 = ⟨ ∅ , 𝑥 ⟩ ) )
23 1 6 7 22 f1o2d ( ⊤ → inl : V –1-1-onto→ ( { ∅ } × V ) )
24 23 mptru inl : V –1-1-onto→ ( { ∅ } × V )