| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-inl |
|- inl = ( x e. _V |-> <. (/) , x >. ) |
| 2 |
|
0ex |
|- (/) e. _V |
| 3 |
2
|
snid |
|- (/) e. { (/) } |
| 4 |
|
opelxpi |
|- ( ( (/) e. { (/) } /\ x e. _V ) -> <. (/) , x >. e. ( { (/) } X. _V ) ) |
| 5 |
3 4
|
mpan |
|- ( x e. _V -> <. (/) , x >. e. ( { (/) } X. _V ) ) |
| 6 |
5
|
adantl |
|- ( ( T. /\ x e. _V ) -> <. (/) , x >. e. ( { (/) } X. _V ) ) |
| 7 |
|
fvexd |
|- ( ( T. /\ y e. ( { (/) } X. _V ) ) -> ( 2nd ` y ) e. _V ) |
| 8 |
|
1st2nd2 |
|- ( y e. ( { (/) } X. _V ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
| 9 |
|
xp1st |
|- ( y e. ( { (/) } X. _V ) -> ( 1st ` y ) e. { (/) } ) |
| 10 |
|
elsni |
|- ( ( 1st ` y ) e. { (/) } -> ( 1st ` y ) = (/) ) |
| 11 |
9 10
|
syl |
|- ( y e. ( { (/) } X. _V ) -> ( 1st ` y ) = (/) ) |
| 12 |
11
|
opeq1d |
|- ( y e. ( { (/) } X. _V ) -> <. ( 1st ` y ) , ( 2nd ` y ) >. = <. (/) , ( 2nd ` y ) >. ) |
| 13 |
8 12
|
eqtrd |
|- ( y e. ( { (/) } X. _V ) -> y = <. (/) , ( 2nd ` y ) >. ) |
| 14 |
13
|
eqeq2d |
|- ( y e. ( { (/) } X. _V ) -> ( <. (/) , x >. = y <-> <. (/) , x >. = <. (/) , ( 2nd ` y ) >. ) ) |
| 15 |
|
eqcom |
|- ( <. (/) , x >. = y <-> y = <. (/) , x >. ) |
| 16 |
|
eqid |
|- (/) = (/) |
| 17 |
|
vex |
|- x e. _V |
| 18 |
2 17
|
opth |
|- ( <. (/) , x >. = <. (/) , ( 2nd ` y ) >. <-> ( (/) = (/) /\ x = ( 2nd ` y ) ) ) |
| 19 |
16 18
|
mpbiran |
|- ( <. (/) , x >. = <. (/) , ( 2nd ` y ) >. <-> x = ( 2nd ` y ) ) |
| 20 |
14 15 19
|
3bitr3g |
|- ( y e. ( { (/) } X. _V ) -> ( y = <. (/) , x >. <-> x = ( 2nd ` y ) ) ) |
| 21 |
20
|
bicomd |
|- ( y e. ( { (/) } X. _V ) -> ( x = ( 2nd ` y ) <-> y = <. (/) , x >. ) ) |
| 22 |
21
|
ad2antll |
|- ( ( T. /\ ( x e. _V /\ y e. ( { (/) } X. _V ) ) ) -> ( x = ( 2nd ` y ) <-> y = <. (/) , x >. ) ) |
| 23 |
1 6 7 22
|
f1o2d |
|- ( T. -> inl : _V -1-1-onto-> ( { (/) } X. _V ) ) |
| 24 |
23
|
mptru |
|- inl : _V -1-1-onto-> ( { (/) } X. _V ) |