| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-inr |
|- inr = ( x e. _V |-> <. 1o , x >. ) |
| 2 |
|
1onn |
|- 1o e. _om |
| 3 |
|
snidg |
|- ( 1o e. _om -> 1o e. { 1o } ) |
| 4 |
2 3
|
ax-mp |
|- 1o e. { 1o } |
| 5 |
|
opelxpi |
|- ( ( 1o e. { 1o } /\ x e. _V ) -> <. 1o , x >. e. ( { 1o } X. _V ) ) |
| 6 |
4 5
|
mpan |
|- ( x e. _V -> <. 1o , x >. e. ( { 1o } X. _V ) ) |
| 7 |
6
|
adantl |
|- ( ( T. /\ x e. _V ) -> <. 1o , x >. e. ( { 1o } X. _V ) ) |
| 8 |
|
fvexd |
|- ( ( T. /\ y e. ( { 1o } X. _V ) ) -> ( 2nd ` y ) e. _V ) |
| 9 |
|
1st2nd2 |
|- ( y e. ( { 1o } X. _V ) -> y = <. ( 1st ` y ) , ( 2nd ` y ) >. ) |
| 10 |
|
xp1st |
|- ( y e. ( { 1o } X. _V ) -> ( 1st ` y ) e. { 1o } ) |
| 11 |
|
elsni |
|- ( ( 1st ` y ) e. { 1o } -> ( 1st ` y ) = 1o ) |
| 12 |
10 11
|
syl |
|- ( y e. ( { 1o } X. _V ) -> ( 1st ` y ) = 1o ) |
| 13 |
12
|
opeq1d |
|- ( y e. ( { 1o } X. _V ) -> <. ( 1st ` y ) , ( 2nd ` y ) >. = <. 1o , ( 2nd ` y ) >. ) |
| 14 |
9 13
|
eqtrd |
|- ( y e. ( { 1o } X. _V ) -> y = <. 1o , ( 2nd ` y ) >. ) |
| 15 |
14
|
eqeq2d |
|- ( y e. ( { 1o } X. _V ) -> ( <. 1o , x >. = y <-> <. 1o , x >. = <. 1o , ( 2nd ` y ) >. ) ) |
| 16 |
|
eqcom |
|- ( <. 1o , x >. = y <-> y = <. 1o , x >. ) |
| 17 |
|
eqid |
|- 1o = 1o |
| 18 |
|
1oex |
|- 1o e. _V |
| 19 |
|
vex |
|- x e. _V |
| 20 |
18 19
|
opth |
|- ( <. 1o , x >. = <. 1o , ( 2nd ` y ) >. <-> ( 1o = 1o /\ x = ( 2nd ` y ) ) ) |
| 21 |
17 20
|
mpbiran |
|- ( <. 1o , x >. = <. 1o , ( 2nd ` y ) >. <-> x = ( 2nd ` y ) ) |
| 22 |
15 16 21
|
3bitr3g |
|- ( y e. ( { 1o } X. _V ) -> ( y = <. 1o , x >. <-> x = ( 2nd ` y ) ) ) |
| 23 |
22
|
bicomd |
|- ( y e. ( { 1o } X. _V ) -> ( x = ( 2nd ` y ) <-> y = <. 1o , x >. ) ) |
| 24 |
23
|
ad2antll |
|- ( ( T. /\ ( x e. _V /\ y e. ( { 1o } X. _V ) ) ) -> ( x = ( 2nd ` y ) <-> y = <. 1o , x >. ) ) |
| 25 |
1 7 8 24
|
f1o2d |
|- ( T. -> inr : _V -1-1-onto-> ( { 1o } X. _V ) ) |
| 26 |
25
|
mptru |
|- inr : _V -1-1-onto-> ( { 1o } X. _V ) |