Metamath Proof Explorer


Theorem dmfexALT

Description: Alternate proof of dmfex : shorter but using ax-rep . (Contributed by NM, 27-Aug-2006) (Proof shortened by Andrew Salmon, 17-Sep-2011) (Proof shortened by AV, 23-Aug-2024) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dmfexALT ( ( 𝐹𝐶𝐹 : 𝐴𝐵 ) → 𝐴 ∈ V )

Proof

Step Hyp Ref Expression
1 elex ( 𝐹𝐶𝐹 ∈ V )
2 fdmexb ( 𝐹 : 𝐴𝐵 → ( 𝐴 ∈ V ↔ 𝐹 ∈ V ) )
3 2 biimprd ( 𝐹 : 𝐴𝐵 → ( 𝐹 ∈ V → 𝐴 ∈ V ) )
4 1 3 mpan9 ( ( 𝐹𝐶𝐹 : 𝐴𝐵 ) → 𝐴 ∈ V )