| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfdm4 |
⊢ dom ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = ran ◡ ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) |
| 2 |
|
cnvin |
⊢ ◡ ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = ( ◡ 𝐶 ∩ ◡ ( 𝐴 × 𝐵 ) ) |
| 3 |
|
cnvxp |
⊢ ◡ ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 ) |
| 4 |
3
|
ineq2i |
⊢ ( ◡ 𝐶 ∩ ◡ ( 𝐴 × 𝐵 ) ) = ( ◡ 𝐶 ∩ ( 𝐵 × 𝐴 ) ) |
| 5 |
2 4
|
eqtri |
⊢ ◡ ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = ( ◡ 𝐶 ∩ ( 𝐵 × 𝐴 ) ) |
| 6 |
5
|
rneqi |
⊢ ran ◡ ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = ran ( ◡ 𝐶 ∩ ( 𝐵 × 𝐴 ) ) |
| 7 |
1 6
|
eqtri |
⊢ dom ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = ran ( ◡ 𝐶 ∩ ( 𝐵 × 𝐴 ) ) |
| 8 |
7
|
eqeq1i |
⊢ ( dom ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = 𝐴 ↔ ran ( ◡ 𝐶 ∩ ( 𝐵 × 𝐴 ) ) = 𝐴 ) |
| 9 |
|
rninxp |
⊢ ( ran ( ◡ 𝐶 ∩ ( 𝐵 × 𝐴 ) ) = 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 ◡ 𝐶 𝑥 ) |
| 10 |
|
vex |
⊢ 𝑦 ∈ V |
| 11 |
|
vex |
⊢ 𝑥 ∈ V |
| 12 |
10 11
|
brcnv |
⊢ ( 𝑦 ◡ 𝐶 𝑥 ↔ 𝑥 𝐶 𝑦 ) |
| 13 |
12
|
rexbii |
⊢ ( ∃ 𝑦 ∈ 𝐵 𝑦 ◡ 𝐶 𝑥 ↔ ∃ 𝑦 ∈ 𝐵 𝑥 𝐶 𝑦 ) |
| 14 |
13
|
ralbii |
⊢ ( ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑦 ◡ 𝐶 𝑥 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 𝐶 𝑦 ) |
| 15 |
8 9 14
|
3bitri |
⊢ ( dom ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = 𝐴 ↔ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝑥 𝐶 𝑦 ) |