Metamath Proof Explorer


Theorem dminxp

Description: Two ways to express totality of a restricted and corestricted binary relation (intersection of a binary relation with a Cartesian product). (Contributed by NM, 17-Jan-2006)

Ref Expression
Assertion dminxp ( dom ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = 𝐴 ↔ ∀ 𝑥𝐴𝑦𝐵 𝑥 𝐶 𝑦 )

Proof

Step Hyp Ref Expression
1 dfdm4 dom ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) )
2 cnvin ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = ( 𝐶 ( 𝐴 × 𝐵 ) )
3 cnvxp ( 𝐴 × 𝐵 ) = ( 𝐵 × 𝐴 )
4 3 ineq2i ( 𝐶 ( 𝐴 × 𝐵 ) ) = ( 𝐶 ∩ ( 𝐵 × 𝐴 ) )
5 2 4 eqtri ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = ( 𝐶 ∩ ( 𝐵 × 𝐴 ) )
6 5 rneqi ran ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = ran ( 𝐶 ∩ ( 𝐵 × 𝐴 ) )
7 1 6 eqtri dom ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = ran ( 𝐶 ∩ ( 𝐵 × 𝐴 ) )
8 7 eqeq1i ( dom ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = 𝐴 ↔ ran ( 𝐶 ∩ ( 𝐵 × 𝐴 ) ) = 𝐴 )
9 rninxp ( ran ( 𝐶 ∩ ( 𝐵 × 𝐴 ) ) = 𝐴 ↔ ∀ 𝑥𝐴𝑦𝐵 𝑦 𝐶 𝑥 )
10 vex 𝑦 ∈ V
11 vex 𝑥 ∈ V
12 10 11 brcnv ( 𝑦 𝐶 𝑥𝑥 𝐶 𝑦 )
13 12 rexbii ( ∃ 𝑦𝐵 𝑦 𝐶 𝑥 ↔ ∃ 𝑦𝐵 𝑥 𝐶 𝑦 )
14 13 ralbii ( ∀ 𝑥𝐴𝑦𝐵 𝑦 𝐶 𝑥 ↔ ∀ 𝑥𝐴𝑦𝐵 𝑥 𝐶 𝑦 )
15 8 9 14 3bitri ( dom ( 𝐶 ∩ ( 𝐴 × 𝐵 ) ) = 𝐴 ↔ ∀ 𝑥𝐴𝑦𝐵 𝑥 𝐶 𝑦 )