Description: The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 23-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dmmptdf2.x | ⊢ Ⅎ 𝑥 𝜑 | |
| dmmptdf2.b | ⊢ Ⅎ 𝑥 𝐵 | ||
| dmmptdf2.a | ⊢ 𝐴 = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) | ||
| dmmptdf2.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ 𝑉 ) | ||
| Assertion | dmmptdf2 | ⊢ ( 𝜑 → dom 𝐴 = 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmmptdf2.x | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | dmmptdf2.b | ⊢ Ⅎ 𝑥 𝐵 | |
| 3 | dmmptdf2.a | ⊢ 𝐴 = ( 𝑥 ∈ 𝐵 ↦ 𝐶 ) | |
| 4 | dmmptdf2.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ 𝑉 ) | |
| 5 | 3 | dmmpt | ⊢ dom 𝐴 = { 𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V } |
| 6 | 4 | elexd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐵 ) → 𝐶 ∈ V ) |
| 7 | 1 6 | ralrimia | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 𝐶 ∈ V ) |
| 8 | 2 | rabid2f | ⊢ ( 𝐵 = { 𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V } ↔ ∀ 𝑥 ∈ 𝐵 𝐶 ∈ V ) |
| 9 | 7 8 | sylibr | ⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ 𝐵 ∣ 𝐶 ∈ V } ) |
| 10 | 5 9 | eqtr4id | ⊢ ( 𝜑 → dom 𝐴 = 𝐵 ) |