Metamath Proof Explorer


Theorem dmsn0

Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004)

Ref Expression
Assertion dmsn0 dom { ∅ } = ∅

Proof

Step Hyp Ref Expression
1 0nelxp ¬ ∅ ∈ ( V × V )
2 dmsnn0 ( ∅ ∈ ( V × V ) ↔ dom { ∅ } ≠ ∅ )
3 2 necon2bbii ( dom { ∅ } = ∅ ↔ ¬ ∅ ∈ ( V × V ) )
4 1 3 mpbir dom { ∅ } = ∅