Description: The domain of the singleton of the empty set is empty. (Contributed by NM, 30-Jan-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmsn0 | |- dom { (/) } = (/) | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0nelxp | |- -. (/) e. ( _V X. _V )  | 
						|
| 2 | dmsnn0 |  |-  ( (/) e. ( _V X. _V ) <-> dom { (/) } =/= (/) ) | 
						|
| 3 | 2 | necon2bbii |  |-  ( dom { (/) } = (/) <-> -. (/) e. ( _V X. _V ) ) | 
						
| 4 | 1 3 | mpbir |  |-  dom { (/) } = (/) |