| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							vex | 
							 |-  x e. _V  | 
						
						
							| 2 | 
							
								1
							 | 
							eldm | 
							 |-  ( x e. dom { A } <-> E. y x { A } y ) | 
						
						
							| 3 | 
							
								
							 | 
							df-br | 
							 |-  ( x { A } y <-> <. x , y >. e. { A } ) | 
						
						
							| 4 | 
							
								
							 | 
							opex | 
							 |-  <. x , y >. e. _V  | 
						
						
							| 5 | 
							
								4
							 | 
							elsn | 
							 |-  ( <. x , y >. e. { A } <-> <. x , y >. = A ) | 
						
						
							| 6 | 
							
								
							 | 
							eqcom | 
							 |-  ( <. x , y >. = A <-> A = <. x , y >. )  | 
						
						
							| 7 | 
							
								3 5 6
							 | 
							3bitri | 
							 |-  ( x { A } y <-> A = <. x , y >. ) | 
						
						
							| 8 | 
							
								7
							 | 
							exbii | 
							 |-  ( E. y x { A } y <-> E. y A = <. x , y >. ) | 
						
						
							| 9 | 
							
								2 8
							 | 
							bitr2i | 
							 |-  ( E. y A = <. x , y >. <-> x e. dom { A } ) | 
						
						
							| 10 | 
							
								9
							 | 
							exbii | 
							 |-  ( E. x E. y A = <. x , y >. <-> E. x x e. dom { A } ) | 
						
						
							| 11 | 
							
								
							 | 
							elvv | 
							 |-  ( A e. ( _V X. _V ) <-> E. x E. y A = <. x , y >. )  | 
						
						
							| 12 | 
							
								
							 | 
							n0 | 
							 |-  ( dom { A } =/= (/) <-> E. x x e. dom { A } ) | 
						
						
							| 13 | 
							
								10 11 12
							 | 
							3bitr4i | 
							 |-  ( A e. ( _V X. _V ) <-> dom { A } =/= (/) ) |