Metamath Proof Explorer
		
		
		
		Description:  Add a zero in the unit places.  (Contributed by Thierry Arnoux, 16-Dec-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypothesis | dp20h.1 | ⊢ 𝐴  ∈  ℝ+ | 
				
					|  | Assertion | dp20h | ⊢  _ 0 𝐴  =  ( 𝐴  /  ; 1 0 ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dp20h.1 | ⊢ 𝐴  ∈  ℝ+ | 
						
							| 2 |  | df-dp2 | ⊢ _ 0 𝐴  =  ( 0  +  ( 𝐴  /  ; 1 0 ) ) | 
						
							| 3 |  | rpcn | ⊢ ( 𝐴  ∈  ℝ+  →  𝐴  ∈  ℂ ) | 
						
							| 4 | 1 3 | ax-mp | ⊢ 𝐴  ∈  ℂ | 
						
							| 5 |  | 10nn0 | ⊢ ; 1 0  ∈  ℕ0 | 
						
							| 6 | 5 | nn0cni | ⊢ ; 1 0  ∈  ℂ | 
						
							| 7 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 8 |  | 10pos | ⊢ 0  <  ; 1 0 | 
						
							| 9 | 7 8 | gtneii | ⊢ ; 1 0  ≠  0 | 
						
							| 10 | 4 6 9 | divcli | ⊢ ( 𝐴  /  ; 1 0 )  ∈  ℂ | 
						
							| 11 | 10 | addlidi | ⊢ ( 0  +  ( 𝐴  /  ; 1 0 ) )  =  ( 𝐴  /  ; 1 0 ) | 
						
							| 12 | 2 11 | eqtri | ⊢ _ 0 𝐴  =  ( 𝐴  /  ; 1 0 ) |