Description: Add a zero in the unit places. (Contributed by Thierry Arnoux, 16-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dp20h.1 | |- A e. RR+ | |
| Assertion | dp20h | |- _ 0 A = ( A / ; 1 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dp20h.1 | |- A e. RR+ | |
| 2 | df-dp2 | |- _ 0 A = ( 0 + ( A / ; 1 0 ) ) | |
| 3 | rpcn | |- ( A e. RR+ -> A e. CC ) | |
| 4 | 1 3 | ax-mp | |- A e. CC | 
| 5 | 10nn0 | |- ; 1 0 e. NN0 | |
| 6 | 5 | nn0cni | |- ; 1 0 e. CC | 
| 7 | 0re | |- 0 e. RR | |
| 8 | 10pos | |- 0 < ; 1 0 | |
| 9 | 7 8 | gtneii | |- ; 1 0 =/= 0 | 
| 10 | 4 6 9 | divcli | |- ( A / ; 1 0 ) e. CC | 
| 11 | 10 | addlidi | |- ( 0 + ( A / ; 1 0 ) ) = ( A / ; 1 0 ) | 
| 12 | 2 11 | eqtri | |- _ 0 A = ( A / ; 1 0 ) |