Description: Add a zero in the tenths (lower) place. (Contributed by Thierry Arnoux, 16-Dec-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dp20u.1 | ⊢ 𝐴 ∈ ℕ0 | |
| Assertion | dp20u | ⊢ _ 𝐴 0 = 𝐴 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dp20u.1 | ⊢ 𝐴 ∈ ℕ0 | |
| 2 | df-dp2 | ⊢ _ 𝐴 0 = ( 𝐴 + ( 0 / ; 1 0 ) ) | |
| 3 | 10nn0 | ⊢ ; 1 0 ∈ ℕ0 | |
| 4 | 3 | nn0rei | ⊢ ; 1 0 ∈ ℝ | 
| 5 | 4 | recni | ⊢ ; 1 0 ∈ ℂ | 
| 6 | 0re | ⊢ 0 ∈ ℝ | |
| 7 | 10pos | ⊢ 0 < ; 1 0 | |
| 8 | 6 7 | gtneii | ⊢ ; 1 0 ≠ 0 | 
| 9 | div0 | ⊢ ( ( ; 1 0 ∈ ℂ ∧ ; 1 0 ≠ 0 ) → ( 0 / ; 1 0 ) = 0 ) | |
| 10 | 5 8 9 | mp2an | ⊢ ( 0 / ; 1 0 ) = 0 | 
| 11 | 10 | oveq2i | ⊢ ( 𝐴 + ( 0 / ; 1 0 ) ) = ( 𝐴 + 0 ) | 
| 12 | 1 | nn0cni | ⊢ 𝐴 ∈ ℂ | 
| 13 | 12 | addridi | ⊢ ( 𝐴 + 0 ) = 𝐴 | 
| 14 | 2 11 13 | 3eqtri | ⊢ _ 𝐴 0 = 𝐴 |