Description: Equality theorem for the decimal expansion constructor. (Contributed by David A. Wheeler, 15-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dp2eq2 | ⊢ ( 𝐴 = 𝐵 → _ 𝐶 𝐴 = _ 𝐶 𝐵 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 / ; 1 0 ) = ( 𝐵 / ; 1 0 ) ) | |
| 2 | 1 | oveq2d | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 + ( 𝐴 / ; 1 0 ) ) = ( 𝐶 + ( 𝐵 / ; 1 0 ) ) ) | 
| 3 | df-dp2 | ⊢ _ 𝐶 𝐴 = ( 𝐶 + ( 𝐴 / ; 1 0 ) ) | |
| 4 | df-dp2 | ⊢ _ 𝐶 𝐵 = ( 𝐶 + ( 𝐵 / ; 1 0 ) ) | |
| 5 | 2 3 4 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → _ 𝐶 𝐴 = _ 𝐶 𝐵 ) |