Step |
Hyp |
Ref |
Expression |
1 |
|
df-dp2 |
⊢ _ 𝑥 𝑦 = ( 𝑥 + ( 𝑦 / ; 1 0 ) ) |
2 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 + ( 𝑦 / ; 1 0 ) ) = ( 𝐴 + ( 𝑦 / ; 1 0 ) ) ) |
3 |
1 2
|
eqtrid |
⊢ ( 𝑥 = 𝐴 → _ 𝑥 𝑦 = ( 𝐴 + ( 𝑦 / ; 1 0 ) ) ) |
4 |
|
oveq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 / ; 1 0 ) = ( 𝐵 / ; 1 0 ) ) |
5 |
4
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 + ( 𝑦 / ; 1 0 ) ) = ( 𝐴 + ( 𝐵 / ; 1 0 ) ) ) |
6 |
|
df-dp2 |
⊢ _ 𝐴 𝐵 = ( 𝐴 + ( 𝐵 / ; 1 0 ) ) |
7 |
5 6
|
eqtr4di |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 + ( 𝑦 / ; 1 0 ) ) = _ 𝐴 𝐵 ) |
8 |
|
df-dp |
⊢ . = ( 𝑥 ∈ ℕ0 , 𝑦 ∈ ℝ ↦ _ 𝑥 𝑦 ) |
9 |
6
|
ovexi |
⊢ _ 𝐴 𝐵 ∈ V |
10 |
3 7 8 9
|
ovmpo |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℝ ) → ( 𝐴 . 𝐵 ) = _ 𝐴 𝐵 ) |