Metamath Proof Explorer


Theorem e100

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e100.1 (    𝜑    ▶    𝜓    )
e100.2 𝜒
e100.3 𝜃
e100.4 ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) )
Assertion e100 (    𝜑    ▶    𝜏    )

Proof

Step Hyp Ref Expression
1 e100.1 (    𝜑    ▶    𝜓    )
2 e100.2 𝜒
3 e100.3 𝜃
4 e100.4 ( 𝜓 → ( 𝜒 → ( 𝜃𝜏 ) ) )
5 2 vd01 (    𝜑    ▶    𝜒    )
6 3 vd01 (    𝜑    ▶    𝜃    )
7 1 5 6 4 e111 (    𝜑    ▶    𝜏    )