Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | e223.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| e223.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | ||
| e223.3 | ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜂 ) | ||
| e223.4 | ⊢ ( 𝜒 → ( 𝜃 → ( 𝜂 → 𝜁 ) ) ) | ||
| Assertion | e223 | ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜁 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | e223.1 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) | |
| 2 | e223.2 | ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | |
| 3 | e223.3 | ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜂 ) | |
| 4 | e223.4 | ⊢ ( 𝜒 → ( 𝜃 → ( 𝜂 → 𝜁 ) ) ) | |
| 5 | 1 | in2 | ⊢ ( 𝜑 ▶ ( 𝜓 → 𝜒 ) ) |
| 6 | 5 | in1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
| 7 | 2 | in2 | ⊢ ( 𝜑 ▶ ( 𝜓 → 𝜃 ) ) |
| 8 | 7 | in1 | ⊢ ( 𝜑 → ( 𝜓 → 𝜃 ) ) |
| 9 | 3 | in3 | ⊢ ( 𝜑 , 𝜓 ▶ ( 𝜏 → 𝜂 ) ) |
| 10 | 9 | in2 | ⊢ ( 𝜑 ▶ ( 𝜓 → ( 𝜏 → 𝜂 ) ) ) |
| 11 | 10 | in1 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜏 → 𝜂 ) ) ) |
| 12 | 6 8 11 4 | ee223 | ⊢ ( 𝜑 → ( 𝜓 → ( 𝜏 → 𝜁 ) ) ) |
| 13 | 12 | dfvd3ir | ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜁 ) |