Metamath Proof Explorer


Theorem e223

Description: A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Dec-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses e223.1 φ,ψχ
e223.2 φ,ψθ
e223.3 φ,ψ,τη
e223.4 χθηζ
Assertion e223 φ,ψ,τζ

Proof

Step Hyp Ref Expression
1 e223.1 φ,ψχ
2 e223.2 φ,ψθ
3 e223.3 φ,ψ,τη
4 e223.4 χθηζ
5 1 in2 φψχ
6 5 in1 φψχ
7 2 in2 φψθ
8 7 in1 φψθ
9 3 in3 φ,ψτη
10 9 in2 φψτη
11 10 in1 φψτη
12 6 8 11 4 ee223 φψτζ
13 12 dfvd3ir φ,ψ,τζ