| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eel12131.1 |
⊢ ( 𝜑 → 𝜓 ) |
| 2 |
|
eel12131.2 |
⊢ ( ( 𝜑 ∧ 𝜒 ) → 𝜃 ) |
| 3 |
|
eel12131.3 |
⊢ ( ( 𝜑 ∧ 𝜏 ) → 𝜂 ) |
| 4 |
|
eel12131.4 |
⊢ ( ( 𝜓 ∧ 𝜃 ∧ 𝜂 ) → 𝜁 ) |
| 5 |
4
|
3exp |
⊢ ( 𝜓 → ( 𝜃 → ( 𝜂 → 𝜁 ) ) ) |
| 6 |
1 2 5
|
syl2imc |
⊢ ( ( 𝜑 ∧ 𝜒 ) → ( 𝜑 → ( 𝜂 → 𝜁 ) ) ) |
| 7 |
6
|
ex |
⊢ ( 𝜑 → ( 𝜒 → ( 𝜑 → ( 𝜂 → 𝜁 ) ) ) ) |
| 8 |
7
|
pm2.43b |
⊢ ( 𝜒 → ( 𝜑 → ( 𝜂 → 𝜁 ) ) ) |
| 9 |
8
|
com13 |
⊢ ( 𝜂 → ( 𝜑 → ( 𝜒 → 𝜁 ) ) ) |
| 10 |
3 9
|
syl |
⊢ ( ( 𝜑 ∧ 𝜏 ) → ( 𝜑 → ( 𝜒 → 𝜁 ) ) ) |
| 11 |
10
|
ex |
⊢ ( 𝜑 → ( 𝜏 → ( 𝜑 → ( 𝜒 → 𝜁 ) ) ) ) |
| 12 |
11
|
pm2.43b |
⊢ ( 𝜏 → ( 𝜑 → ( 𝜒 → 𝜁 ) ) ) |
| 13 |
12
|
3imp231 |
⊢ ( ( 𝜑 ∧ 𝜒 ∧ 𝜏 ) → 𝜁 ) |