Metamath Proof Explorer


Theorem eel3132

Description: syl2an with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016)

Ref Expression
Hypotheses eel3132.1 ( ( 𝜑𝜓 ) → 𝜒 )
eel3132.2 ( ( 𝜃𝜓 ) → 𝜏 )
eel3132.3 ( ( 𝜒𝜏 ) → 𝜂 )
Assertion eel3132 ( ( 𝜑𝜃𝜓 ) → 𝜂 )

Proof

Step Hyp Ref Expression
1 eel3132.1 ( ( 𝜑𝜓 ) → 𝜒 )
2 eel3132.2 ( ( 𝜃𝜓 ) → 𝜏 )
3 eel3132.3 ( ( 𝜒𝜏 ) → 𝜂 )
4 1 2 3 syl2an ( ( ( 𝜑𝜓 ) ∧ ( 𝜃𝜓 ) ) → 𝜂 )
5 4 3impdir ( ( 𝜑𝜃𝜓 ) → 𝜂 )