Metamath Proof Explorer
		
		
		
		Description:  Difference of exponents law for exponential function, deduction form.
       (Contributed by SN, 25-Apr-2025)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | efsubd.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
					
						|  |  | efsubd.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
				
					|  | Assertion | efsubd | ⊢  ( 𝜑  →  ( exp ‘ ( 𝐴  −  𝐵 ) )  =  ( ( exp ‘ 𝐴 )  /  ( exp ‘ 𝐵 ) ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | efsubd.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | efsubd.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 |  | efsub | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( exp ‘ ( 𝐴  −  𝐵 ) )  =  ( ( exp ‘ 𝐴 )  /  ( exp ‘ 𝐵 ) ) ) | 
						
							| 4 | 1 2 3 | syl2anc | ⊢ ( 𝜑  →  ( exp ‘ ( 𝐴  −  𝐵 ) )  =  ( ( exp ‘ 𝐴 )  /  ( exp ‘ 𝐵 ) ) ) |