| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ef11d.a | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | ef11d.b | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 3 | 1 2 | efsubd | ⊢ ( 𝜑  →  ( exp ‘ ( 𝐴  −  𝐵 ) )  =  ( ( exp ‘ 𝐴 )  /  ( exp ‘ 𝐵 ) ) ) | 
						
							| 4 | 3 | eqeq1d | ⊢ ( 𝜑  →  ( ( exp ‘ ( 𝐴  −  𝐵 ) )  =  1  ↔  ( ( exp ‘ 𝐴 )  /  ( exp ‘ 𝐵 ) )  =  1 ) ) | 
						
							| 5 |  | ax-icn | ⊢ i  ∈  ℂ | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  i  ∈  ℂ ) | 
						
							| 7 |  | 2cnd | ⊢ ( 𝜑  →  2  ∈  ℂ ) | 
						
							| 8 |  | picn | ⊢ π  ∈  ℂ | 
						
							| 9 | 8 | a1i | ⊢ ( 𝜑  →  π  ∈  ℂ ) | 
						
							| 10 | 7 9 | mulcld | ⊢ ( 𝜑  →  ( 2  ·  π )  ∈  ℂ ) | 
						
							| 11 | 6 10 | mulcld | ⊢ ( 𝜑  →  ( i  ·  ( 2  ·  π ) )  ∈  ℂ ) | 
						
							| 12 | 1 2 | subcld | ⊢ ( 𝜑  →  ( 𝐴  −  𝐵 )  ∈  ℂ ) | 
						
							| 13 |  | ine0 | ⊢ i  ≠  0 | 
						
							| 14 | 13 | a1i | ⊢ ( 𝜑  →  i  ≠  0 ) | 
						
							| 15 |  | 2ne0 | ⊢ 2  ≠  0 | 
						
							| 16 | 15 | a1i | ⊢ ( 𝜑  →  2  ≠  0 ) | 
						
							| 17 |  | pine0 | ⊢ π  ≠  0 | 
						
							| 18 | 17 | a1i | ⊢ ( 𝜑  →  π  ≠  0 ) | 
						
							| 19 | 7 9 16 18 | mulne0d | ⊢ ( 𝜑  →  ( 2  ·  π )  ≠  0 ) | 
						
							| 20 | 6 10 14 19 | mulne0d | ⊢ ( 𝜑  →  ( i  ·  ( 2  ·  π ) )  ≠  0 ) | 
						
							| 21 | 11 12 20 | zdivgd | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ℤ ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  =  ( 𝐴  −  𝐵 )  ↔  ( ( 𝐴  −  𝐵 )  /  ( i  ·  ( 2  ·  π ) ) )  ∈  ℤ ) ) | 
						
							| 22 |  | eqcom | ⊢ ( 𝐴  =  ( 𝐵  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  ↔  ( 𝐵  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  =  𝐴 ) | 
						
							| 23 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  𝐵  ∈  ℂ ) | 
						
							| 24 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( i  ·  ( 2  ·  π ) )  ∈  ℂ ) | 
						
							| 25 |  | zcn | ⊢ ( 𝑛  ∈  ℤ  →  𝑛  ∈  ℂ ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  𝑛  ∈  ℂ ) | 
						
							| 27 | 24 26 | mulcld | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  ∈  ℂ ) | 
						
							| 28 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  𝐴  ∈  ℂ ) | 
						
							| 29 | 23 27 28 | addrsub | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( ( 𝐵  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  =  𝐴  ↔  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  =  ( 𝐴  −  𝐵 ) ) ) | 
						
							| 30 | 22 29 | bitrid | ⊢ ( ( 𝜑  ∧  𝑛  ∈  ℤ )  →  ( 𝐴  =  ( 𝐵  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  ↔  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  =  ( 𝐴  −  𝐵 ) ) ) | 
						
							| 31 | 30 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑛  ∈  ℤ 𝐴  =  ( 𝐵  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) )  ↔  ∃ 𝑛  ∈  ℤ ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 )  =  ( 𝐴  −  𝐵 ) ) ) | 
						
							| 32 |  | efeq1 | ⊢ ( ( 𝐴  −  𝐵 )  ∈  ℂ  →  ( ( exp ‘ ( 𝐴  −  𝐵 ) )  =  1  ↔  ( ( 𝐴  −  𝐵 )  /  ( i  ·  ( 2  ·  π ) ) )  ∈  ℤ ) ) | 
						
							| 33 | 12 32 | syl | ⊢ ( 𝜑  →  ( ( exp ‘ ( 𝐴  −  𝐵 ) )  =  1  ↔  ( ( 𝐴  −  𝐵 )  /  ( i  ·  ( 2  ·  π ) ) )  ∈  ℤ ) ) | 
						
							| 34 | 21 31 33 | 3bitr4rd | ⊢ ( 𝜑  →  ( ( exp ‘ ( 𝐴  −  𝐵 ) )  =  1  ↔  ∃ 𝑛  ∈  ℤ 𝐴  =  ( 𝐵  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) ) ) ) | 
						
							| 35 | 1 | efcld | ⊢ ( 𝜑  →  ( exp ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 36 | 2 | efcld | ⊢ ( 𝜑  →  ( exp ‘ 𝐵 )  ∈  ℂ ) | 
						
							| 37 | 2 | efne0d | ⊢ ( 𝜑  →  ( exp ‘ 𝐵 )  ≠  0 ) | 
						
							| 38 | 35 36 37 | diveq1ad | ⊢ ( 𝜑  →  ( ( ( exp ‘ 𝐴 )  /  ( exp ‘ 𝐵 ) )  =  1  ↔  ( exp ‘ 𝐴 )  =  ( exp ‘ 𝐵 ) ) ) | 
						
							| 39 | 4 34 38 | 3bitr3rd | ⊢ ( 𝜑  →  ( ( exp ‘ 𝐴 )  =  ( exp ‘ 𝐵 )  ↔  ∃ 𝑛  ∈  ℤ 𝐴  =  ( 𝐵  +  ( ( i  ·  ( 2  ·  π ) )  ·  𝑛 ) ) ) ) |