| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ef11d.a |  |-  ( ph -> A e. CC ) | 
						
							| 2 |  | ef11d.b |  |-  ( ph -> B e. CC ) | 
						
							| 3 | 1 2 | efsubd |  |-  ( ph -> ( exp ` ( A - B ) ) = ( ( exp ` A ) / ( exp ` B ) ) ) | 
						
							| 4 | 3 | eqeq1d |  |-  ( ph -> ( ( exp ` ( A - B ) ) = 1 <-> ( ( exp ` A ) / ( exp ` B ) ) = 1 ) ) | 
						
							| 5 |  | ax-icn |  |-  _i e. CC | 
						
							| 6 | 5 | a1i |  |-  ( ph -> _i e. CC ) | 
						
							| 7 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 8 |  | picn |  |-  _pi e. CC | 
						
							| 9 | 8 | a1i |  |-  ( ph -> _pi e. CC ) | 
						
							| 10 | 7 9 | mulcld |  |-  ( ph -> ( 2 x. _pi ) e. CC ) | 
						
							| 11 | 6 10 | mulcld |  |-  ( ph -> ( _i x. ( 2 x. _pi ) ) e. CC ) | 
						
							| 12 | 1 2 | subcld |  |-  ( ph -> ( A - B ) e. CC ) | 
						
							| 13 |  | ine0 |  |-  _i =/= 0 | 
						
							| 14 | 13 | a1i |  |-  ( ph -> _i =/= 0 ) | 
						
							| 15 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 16 | 15 | a1i |  |-  ( ph -> 2 =/= 0 ) | 
						
							| 17 |  | pine0 |  |-  _pi =/= 0 | 
						
							| 18 | 17 | a1i |  |-  ( ph -> _pi =/= 0 ) | 
						
							| 19 | 7 9 16 18 | mulne0d |  |-  ( ph -> ( 2 x. _pi ) =/= 0 ) | 
						
							| 20 | 6 10 14 19 | mulne0d |  |-  ( ph -> ( _i x. ( 2 x. _pi ) ) =/= 0 ) | 
						
							| 21 | 11 12 20 | zdivgd |  |-  ( ph -> ( E. n e. ZZ ( ( _i x. ( 2 x. _pi ) ) x. n ) = ( A - B ) <-> ( ( A - B ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) | 
						
							| 22 |  | eqcom |  |-  ( A = ( B + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) <-> ( B + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) = A ) | 
						
							| 23 | 2 | adantr |  |-  ( ( ph /\ n e. ZZ ) -> B e. CC ) | 
						
							| 24 | 11 | adantr |  |-  ( ( ph /\ n e. ZZ ) -> ( _i x. ( 2 x. _pi ) ) e. CC ) | 
						
							| 25 |  | zcn |  |-  ( n e. ZZ -> n e. CC ) | 
						
							| 26 | 25 | adantl |  |-  ( ( ph /\ n e. ZZ ) -> n e. CC ) | 
						
							| 27 | 24 26 | mulcld |  |-  ( ( ph /\ n e. ZZ ) -> ( ( _i x. ( 2 x. _pi ) ) x. n ) e. CC ) | 
						
							| 28 | 1 | adantr |  |-  ( ( ph /\ n e. ZZ ) -> A e. CC ) | 
						
							| 29 | 23 27 28 | addrsub |  |-  ( ( ph /\ n e. ZZ ) -> ( ( B + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) = A <-> ( ( _i x. ( 2 x. _pi ) ) x. n ) = ( A - B ) ) ) | 
						
							| 30 | 22 29 | bitrid |  |-  ( ( ph /\ n e. ZZ ) -> ( A = ( B + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) <-> ( ( _i x. ( 2 x. _pi ) ) x. n ) = ( A - B ) ) ) | 
						
							| 31 | 30 | rexbidva |  |-  ( ph -> ( E. n e. ZZ A = ( B + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) <-> E. n e. ZZ ( ( _i x. ( 2 x. _pi ) ) x. n ) = ( A - B ) ) ) | 
						
							| 32 |  | efeq1 |  |-  ( ( A - B ) e. CC -> ( ( exp ` ( A - B ) ) = 1 <-> ( ( A - B ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) | 
						
							| 33 | 12 32 | syl |  |-  ( ph -> ( ( exp ` ( A - B ) ) = 1 <-> ( ( A - B ) / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) | 
						
							| 34 | 21 31 33 | 3bitr4rd |  |-  ( ph -> ( ( exp ` ( A - B ) ) = 1 <-> E. n e. ZZ A = ( B + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) | 
						
							| 35 | 1 | efcld |  |-  ( ph -> ( exp ` A ) e. CC ) | 
						
							| 36 | 2 | efcld |  |-  ( ph -> ( exp ` B ) e. CC ) | 
						
							| 37 | 2 | efne0d |  |-  ( ph -> ( exp ` B ) =/= 0 ) | 
						
							| 38 | 35 36 37 | diveq1ad |  |-  ( ph -> ( ( ( exp ` A ) / ( exp ` B ) ) = 1 <-> ( exp ` A ) = ( exp ` B ) ) ) | 
						
							| 39 | 4 34 38 | 3bitr3rd |  |-  ( ph -> ( ( exp ` A ) = ( exp ` B ) <-> E. n e. ZZ A = ( B + ( ( _i x. ( 2 x. _pi ) ) x. n ) ) ) ) |