| Step |
Hyp |
Ref |
Expression |
| 1 |
|
halfcl |
|- ( A e. CC -> ( A / 2 ) e. CC ) |
| 2 |
|
ax-icn |
|- _i e. CC |
| 3 |
|
ine0 |
|- _i =/= 0 |
| 4 |
|
divcl |
|- ( ( ( A / 2 ) e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( A / 2 ) / _i ) e. CC ) |
| 5 |
2 3 4
|
mp3an23 |
|- ( ( A / 2 ) e. CC -> ( ( A / 2 ) / _i ) e. CC ) |
| 6 |
1 5
|
syl |
|- ( A e. CC -> ( ( A / 2 ) / _i ) e. CC ) |
| 7 |
|
sineq0 |
|- ( ( ( A / 2 ) / _i ) e. CC -> ( ( sin ` ( ( A / 2 ) / _i ) ) = 0 <-> ( ( ( A / 2 ) / _i ) / _pi ) e. ZZ ) ) |
| 8 |
6 7
|
syl |
|- ( A e. CC -> ( ( sin ` ( ( A / 2 ) / _i ) ) = 0 <-> ( ( ( A / 2 ) / _i ) / _pi ) e. ZZ ) ) |
| 9 |
|
sinval |
|- ( ( ( A / 2 ) / _i ) e. CC -> ( sin ` ( ( A / 2 ) / _i ) ) = ( ( ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) - ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) ) / ( 2 x. _i ) ) ) |
| 10 |
6 9
|
syl |
|- ( A e. CC -> ( sin ` ( ( A / 2 ) / _i ) ) = ( ( ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) - ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) ) / ( 2 x. _i ) ) ) |
| 11 |
|
divcan2 |
|- ( ( ( A / 2 ) e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( _i x. ( ( A / 2 ) / _i ) ) = ( A / 2 ) ) |
| 12 |
2 3 11
|
mp3an23 |
|- ( ( A / 2 ) e. CC -> ( _i x. ( ( A / 2 ) / _i ) ) = ( A / 2 ) ) |
| 13 |
1 12
|
syl |
|- ( A e. CC -> ( _i x. ( ( A / 2 ) / _i ) ) = ( A / 2 ) ) |
| 14 |
13
|
fveq2d |
|- ( A e. CC -> ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) = ( exp ` ( A / 2 ) ) ) |
| 15 |
|
mulneg1 |
|- ( ( _i e. CC /\ ( ( A / 2 ) / _i ) e. CC ) -> ( -u _i x. ( ( A / 2 ) / _i ) ) = -u ( _i x. ( ( A / 2 ) / _i ) ) ) |
| 16 |
2 6 15
|
sylancr |
|- ( A e. CC -> ( -u _i x. ( ( A / 2 ) / _i ) ) = -u ( _i x. ( ( A / 2 ) / _i ) ) ) |
| 17 |
13
|
negeqd |
|- ( A e. CC -> -u ( _i x. ( ( A / 2 ) / _i ) ) = -u ( A / 2 ) ) |
| 18 |
16 17
|
eqtrd |
|- ( A e. CC -> ( -u _i x. ( ( A / 2 ) / _i ) ) = -u ( A / 2 ) ) |
| 19 |
18
|
fveq2d |
|- ( A e. CC -> ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) = ( exp ` -u ( A / 2 ) ) ) |
| 20 |
14 19
|
oveq12d |
|- ( A e. CC -> ( ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) - ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) ) = ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) ) |
| 21 |
20
|
oveq1d |
|- ( A e. CC -> ( ( ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) - ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) ) / ( 2 x. _i ) ) = ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) ) |
| 22 |
10 21
|
eqtrd |
|- ( A e. CC -> ( sin ` ( ( A / 2 ) / _i ) ) = ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) ) |
| 23 |
22
|
eqeq1d |
|- ( A e. CC -> ( ( sin ` ( ( A / 2 ) / _i ) ) = 0 <-> ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) = 0 ) ) |
| 24 |
|
efcl |
|- ( ( A / 2 ) e. CC -> ( exp ` ( A / 2 ) ) e. CC ) |
| 25 |
1 24
|
syl |
|- ( A e. CC -> ( exp ` ( A / 2 ) ) e. CC ) |
| 26 |
1
|
negcld |
|- ( A e. CC -> -u ( A / 2 ) e. CC ) |
| 27 |
|
efcl |
|- ( -u ( A / 2 ) e. CC -> ( exp ` -u ( A / 2 ) ) e. CC ) |
| 28 |
26 27
|
syl |
|- ( A e. CC -> ( exp ` -u ( A / 2 ) ) e. CC ) |
| 29 |
25 28
|
subcld |
|- ( A e. CC -> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) e. CC ) |
| 30 |
|
2cn |
|- 2 e. CC |
| 31 |
30 2
|
mulcli |
|- ( 2 x. _i ) e. CC |
| 32 |
|
2ne0 |
|- 2 =/= 0 |
| 33 |
30 2 32 3
|
mulne0i |
|- ( 2 x. _i ) =/= 0 |
| 34 |
|
diveq0 |
|- ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) e. CC /\ ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 ) ) |
| 35 |
31 33 34
|
mp3an23 |
|- ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) e. CC -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 ) ) |
| 36 |
29 35
|
syl |
|- ( A e. CC -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 ) ) |
| 37 |
|
efne0 |
|- ( -u ( A / 2 ) e. CC -> ( exp ` -u ( A / 2 ) ) =/= 0 ) |
| 38 |
26 37
|
syl |
|- ( A e. CC -> ( exp ` -u ( A / 2 ) ) =/= 0 ) |
| 39 |
25 28 28 38
|
divsubdird |
|- ( A e. CC -> ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( exp ` -u ( A / 2 ) ) ) = ( ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) - ( ( exp ` -u ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) ) ) |
| 40 |
|
efsub |
|- ( ( ( A / 2 ) e. CC /\ -u ( A / 2 ) e. CC ) -> ( exp ` ( ( A / 2 ) - -u ( A / 2 ) ) ) = ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) ) |
| 41 |
1 26 40
|
syl2anc |
|- ( A e. CC -> ( exp ` ( ( A / 2 ) - -u ( A / 2 ) ) ) = ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) ) |
| 42 |
1 1
|
subnegd |
|- ( A e. CC -> ( ( A / 2 ) - -u ( A / 2 ) ) = ( ( A / 2 ) + ( A / 2 ) ) ) |
| 43 |
|
2halves |
|- ( A e. CC -> ( ( A / 2 ) + ( A / 2 ) ) = A ) |
| 44 |
42 43
|
eqtrd |
|- ( A e. CC -> ( ( A / 2 ) - -u ( A / 2 ) ) = A ) |
| 45 |
44
|
fveq2d |
|- ( A e. CC -> ( exp ` ( ( A / 2 ) - -u ( A / 2 ) ) ) = ( exp ` A ) ) |
| 46 |
41 45
|
eqtr3d |
|- ( A e. CC -> ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) = ( exp ` A ) ) |
| 47 |
28 38
|
dividd |
|- ( A e. CC -> ( ( exp ` -u ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) = 1 ) |
| 48 |
46 47
|
oveq12d |
|- ( A e. CC -> ( ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) - ( ( exp ` -u ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) ) = ( ( exp ` A ) - 1 ) ) |
| 49 |
39 48
|
eqtrd |
|- ( A e. CC -> ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( exp ` -u ( A / 2 ) ) ) = ( ( exp ` A ) - 1 ) ) |
| 50 |
49
|
eqeq1d |
|- ( A e. CC -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( exp ` -u ( A / 2 ) ) ) = 0 <-> ( ( exp ` A ) - 1 ) = 0 ) ) |
| 51 |
29 28 38
|
diveq0ad |
|- ( A e. CC -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( exp ` -u ( A / 2 ) ) ) = 0 <-> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 ) ) |
| 52 |
|
efcl |
|- ( A e. CC -> ( exp ` A ) e. CC ) |
| 53 |
|
ax-1cn |
|- 1 e. CC |
| 54 |
|
subeq0 |
|- ( ( ( exp ` A ) e. CC /\ 1 e. CC ) -> ( ( ( exp ` A ) - 1 ) = 0 <-> ( exp ` A ) = 1 ) ) |
| 55 |
52 53 54
|
sylancl |
|- ( A e. CC -> ( ( ( exp ` A ) - 1 ) = 0 <-> ( exp ` A ) = 1 ) ) |
| 56 |
50 51 55
|
3bitr3d |
|- ( A e. CC -> ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 <-> ( exp ` A ) = 1 ) ) |
| 57 |
23 36 56
|
3bitrd |
|- ( A e. CC -> ( ( sin ` ( ( A / 2 ) / _i ) ) = 0 <-> ( exp ` A ) = 1 ) ) |
| 58 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
| 59 |
2 3
|
pm3.2i |
|- ( _i e. CC /\ _i =/= 0 ) |
| 60 |
|
divdiv32 |
|- ( ( A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( _i e. CC /\ _i =/= 0 ) ) -> ( ( A / 2 ) / _i ) = ( ( A / _i ) / 2 ) ) |
| 61 |
58 59 60
|
mp3an23 |
|- ( A e. CC -> ( ( A / 2 ) / _i ) = ( ( A / _i ) / 2 ) ) |
| 62 |
61
|
oveq1d |
|- ( A e. CC -> ( ( ( A / 2 ) / _i ) / _pi ) = ( ( ( A / _i ) / 2 ) / _pi ) ) |
| 63 |
|
divcl |
|- ( ( A e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( A / _i ) e. CC ) |
| 64 |
2 3 63
|
mp3an23 |
|- ( A e. CC -> ( A / _i ) e. CC ) |
| 65 |
|
picn |
|- _pi e. CC |
| 66 |
|
pire |
|- _pi e. RR |
| 67 |
|
pipos |
|- 0 < _pi |
| 68 |
66 67
|
gt0ne0ii |
|- _pi =/= 0 |
| 69 |
65 68
|
pm3.2i |
|- ( _pi e. CC /\ _pi =/= 0 ) |
| 70 |
|
divdiv1 |
|- ( ( ( A / _i ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( _pi e. CC /\ _pi =/= 0 ) ) -> ( ( ( A / _i ) / 2 ) / _pi ) = ( ( A / _i ) / ( 2 x. _pi ) ) ) |
| 71 |
58 69 70
|
mp3an23 |
|- ( ( A / _i ) e. CC -> ( ( ( A / _i ) / 2 ) / _pi ) = ( ( A / _i ) / ( 2 x. _pi ) ) ) |
| 72 |
64 71
|
syl |
|- ( A e. CC -> ( ( ( A / _i ) / 2 ) / _pi ) = ( ( A / _i ) / ( 2 x. _pi ) ) ) |
| 73 |
30 65
|
mulcli |
|- ( 2 x. _pi ) e. CC |
| 74 |
30 65 32 68
|
mulne0i |
|- ( 2 x. _pi ) =/= 0 |
| 75 |
73 74
|
pm3.2i |
|- ( ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) |
| 76 |
|
divdiv1 |
|- ( ( A e. CC /\ ( _i e. CC /\ _i =/= 0 ) /\ ( ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) ) -> ( ( A / _i ) / ( 2 x. _pi ) ) = ( A / ( _i x. ( 2 x. _pi ) ) ) ) |
| 77 |
59 75 76
|
mp3an23 |
|- ( A e. CC -> ( ( A / _i ) / ( 2 x. _pi ) ) = ( A / ( _i x. ( 2 x. _pi ) ) ) ) |
| 78 |
72 77
|
eqtrd |
|- ( A e. CC -> ( ( ( A / _i ) / 2 ) / _pi ) = ( A / ( _i x. ( 2 x. _pi ) ) ) ) |
| 79 |
62 78
|
eqtrd |
|- ( A e. CC -> ( ( ( A / 2 ) / _i ) / _pi ) = ( A / ( _i x. ( 2 x. _pi ) ) ) ) |
| 80 |
79
|
eleq1d |
|- ( A e. CC -> ( ( ( ( A / 2 ) / _i ) / _pi ) e. ZZ <-> ( A / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |
| 81 |
8 57 80
|
3bitr3d |
|- ( A e. CC -> ( ( exp ` A ) = 1 <-> ( A / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |