Step |
Hyp |
Ref |
Expression |
1 |
|
halfcl |
|- ( A e. CC -> ( A / 2 ) e. CC ) |
2 |
|
ax-icn |
|- _i e. CC |
3 |
|
ine0 |
|- _i =/= 0 |
4 |
|
divcl |
|- ( ( ( A / 2 ) e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( A / 2 ) / _i ) e. CC ) |
5 |
2 3 4
|
mp3an23 |
|- ( ( A / 2 ) e. CC -> ( ( A / 2 ) / _i ) e. CC ) |
6 |
1 5
|
syl |
|- ( A e. CC -> ( ( A / 2 ) / _i ) e. CC ) |
7 |
|
sineq0 |
|- ( ( ( A / 2 ) / _i ) e. CC -> ( ( sin ` ( ( A / 2 ) / _i ) ) = 0 <-> ( ( ( A / 2 ) / _i ) / _pi ) e. ZZ ) ) |
8 |
6 7
|
syl |
|- ( A e. CC -> ( ( sin ` ( ( A / 2 ) / _i ) ) = 0 <-> ( ( ( A / 2 ) / _i ) / _pi ) e. ZZ ) ) |
9 |
|
sinval |
|- ( ( ( A / 2 ) / _i ) e. CC -> ( sin ` ( ( A / 2 ) / _i ) ) = ( ( ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) - ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) ) / ( 2 x. _i ) ) ) |
10 |
6 9
|
syl |
|- ( A e. CC -> ( sin ` ( ( A / 2 ) / _i ) ) = ( ( ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) - ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) ) / ( 2 x. _i ) ) ) |
11 |
|
divcan2 |
|- ( ( ( A / 2 ) e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( _i x. ( ( A / 2 ) / _i ) ) = ( A / 2 ) ) |
12 |
2 3 11
|
mp3an23 |
|- ( ( A / 2 ) e. CC -> ( _i x. ( ( A / 2 ) / _i ) ) = ( A / 2 ) ) |
13 |
1 12
|
syl |
|- ( A e. CC -> ( _i x. ( ( A / 2 ) / _i ) ) = ( A / 2 ) ) |
14 |
13
|
fveq2d |
|- ( A e. CC -> ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) = ( exp ` ( A / 2 ) ) ) |
15 |
|
mulneg1 |
|- ( ( _i e. CC /\ ( ( A / 2 ) / _i ) e. CC ) -> ( -u _i x. ( ( A / 2 ) / _i ) ) = -u ( _i x. ( ( A / 2 ) / _i ) ) ) |
16 |
2 6 15
|
sylancr |
|- ( A e. CC -> ( -u _i x. ( ( A / 2 ) / _i ) ) = -u ( _i x. ( ( A / 2 ) / _i ) ) ) |
17 |
13
|
negeqd |
|- ( A e. CC -> -u ( _i x. ( ( A / 2 ) / _i ) ) = -u ( A / 2 ) ) |
18 |
16 17
|
eqtrd |
|- ( A e. CC -> ( -u _i x. ( ( A / 2 ) / _i ) ) = -u ( A / 2 ) ) |
19 |
18
|
fveq2d |
|- ( A e. CC -> ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) = ( exp ` -u ( A / 2 ) ) ) |
20 |
14 19
|
oveq12d |
|- ( A e. CC -> ( ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) - ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) ) = ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) ) |
21 |
20
|
oveq1d |
|- ( A e. CC -> ( ( ( exp ` ( _i x. ( ( A / 2 ) / _i ) ) ) - ( exp ` ( -u _i x. ( ( A / 2 ) / _i ) ) ) ) / ( 2 x. _i ) ) = ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) ) |
22 |
10 21
|
eqtrd |
|- ( A e. CC -> ( sin ` ( ( A / 2 ) / _i ) ) = ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) ) |
23 |
22
|
eqeq1d |
|- ( A e. CC -> ( ( sin ` ( ( A / 2 ) / _i ) ) = 0 <-> ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) = 0 ) ) |
24 |
|
efcl |
|- ( ( A / 2 ) e. CC -> ( exp ` ( A / 2 ) ) e. CC ) |
25 |
1 24
|
syl |
|- ( A e. CC -> ( exp ` ( A / 2 ) ) e. CC ) |
26 |
1
|
negcld |
|- ( A e. CC -> -u ( A / 2 ) e. CC ) |
27 |
|
efcl |
|- ( -u ( A / 2 ) e. CC -> ( exp ` -u ( A / 2 ) ) e. CC ) |
28 |
26 27
|
syl |
|- ( A e. CC -> ( exp ` -u ( A / 2 ) ) e. CC ) |
29 |
25 28
|
subcld |
|- ( A e. CC -> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) e. CC ) |
30 |
|
2cn |
|- 2 e. CC |
31 |
30 2
|
mulcli |
|- ( 2 x. _i ) e. CC |
32 |
|
2ne0 |
|- 2 =/= 0 |
33 |
30 2 32 3
|
mulne0i |
|- ( 2 x. _i ) =/= 0 |
34 |
|
diveq0 |
|- ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) e. CC /\ ( 2 x. _i ) e. CC /\ ( 2 x. _i ) =/= 0 ) -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 ) ) |
35 |
31 33 34
|
mp3an23 |
|- ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) e. CC -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 ) ) |
36 |
29 35
|
syl |
|- ( A e. CC -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( 2 x. _i ) ) = 0 <-> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 ) ) |
37 |
|
efne0 |
|- ( -u ( A / 2 ) e. CC -> ( exp ` -u ( A / 2 ) ) =/= 0 ) |
38 |
26 37
|
syl |
|- ( A e. CC -> ( exp ` -u ( A / 2 ) ) =/= 0 ) |
39 |
25 28 28 38
|
divsubdird |
|- ( A e. CC -> ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( exp ` -u ( A / 2 ) ) ) = ( ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) - ( ( exp ` -u ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) ) ) |
40 |
|
efsub |
|- ( ( ( A / 2 ) e. CC /\ -u ( A / 2 ) e. CC ) -> ( exp ` ( ( A / 2 ) - -u ( A / 2 ) ) ) = ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) ) |
41 |
1 26 40
|
syl2anc |
|- ( A e. CC -> ( exp ` ( ( A / 2 ) - -u ( A / 2 ) ) ) = ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) ) |
42 |
1 1
|
subnegd |
|- ( A e. CC -> ( ( A / 2 ) - -u ( A / 2 ) ) = ( ( A / 2 ) + ( A / 2 ) ) ) |
43 |
|
2halves |
|- ( A e. CC -> ( ( A / 2 ) + ( A / 2 ) ) = A ) |
44 |
42 43
|
eqtrd |
|- ( A e. CC -> ( ( A / 2 ) - -u ( A / 2 ) ) = A ) |
45 |
44
|
fveq2d |
|- ( A e. CC -> ( exp ` ( ( A / 2 ) - -u ( A / 2 ) ) ) = ( exp ` A ) ) |
46 |
41 45
|
eqtr3d |
|- ( A e. CC -> ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) = ( exp ` A ) ) |
47 |
28 38
|
dividd |
|- ( A e. CC -> ( ( exp ` -u ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) = 1 ) |
48 |
46 47
|
oveq12d |
|- ( A e. CC -> ( ( ( exp ` ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) - ( ( exp ` -u ( A / 2 ) ) / ( exp ` -u ( A / 2 ) ) ) ) = ( ( exp ` A ) - 1 ) ) |
49 |
39 48
|
eqtrd |
|- ( A e. CC -> ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( exp ` -u ( A / 2 ) ) ) = ( ( exp ` A ) - 1 ) ) |
50 |
49
|
eqeq1d |
|- ( A e. CC -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( exp ` -u ( A / 2 ) ) ) = 0 <-> ( ( exp ` A ) - 1 ) = 0 ) ) |
51 |
29 28 38
|
diveq0ad |
|- ( A e. CC -> ( ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) / ( exp ` -u ( A / 2 ) ) ) = 0 <-> ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 ) ) |
52 |
|
efcl |
|- ( A e. CC -> ( exp ` A ) e. CC ) |
53 |
|
ax-1cn |
|- 1 e. CC |
54 |
|
subeq0 |
|- ( ( ( exp ` A ) e. CC /\ 1 e. CC ) -> ( ( ( exp ` A ) - 1 ) = 0 <-> ( exp ` A ) = 1 ) ) |
55 |
52 53 54
|
sylancl |
|- ( A e. CC -> ( ( ( exp ` A ) - 1 ) = 0 <-> ( exp ` A ) = 1 ) ) |
56 |
50 51 55
|
3bitr3d |
|- ( A e. CC -> ( ( ( exp ` ( A / 2 ) ) - ( exp ` -u ( A / 2 ) ) ) = 0 <-> ( exp ` A ) = 1 ) ) |
57 |
23 36 56
|
3bitrd |
|- ( A e. CC -> ( ( sin ` ( ( A / 2 ) / _i ) ) = 0 <-> ( exp ` A ) = 1 ) ) |
58 |
|
2cnne0 |
|- ( 2 e. CC /\ 2 =/= 0 ) |
59 |
2 3
|
pm3.2i |
|- ( _i e. CC /\ _i =/= 0 ) |
60 |
|
divdiv32 |
|- ( ( A e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( _i e. CC /\ _i =/= 0 ) ) -> ( ( A / 2 ) / _i ) = ( ( A / _i ) / 2 ) ) |
61 |
58 59 60
|
mp3an23 |
|- ( A e. CC -> ( ( A / 2 ) / _i ) = ( ( A / _i ) / 2 ) ) |
62 |
61
|
oveq1d |
|- ( A e. CC -> ( ( ( A / 2 ) / _i ) / _pi ) = ( ( ( A / _i ) / 2 ) / _pi ) ) |
63 |
|
divcl |
|- ( ( A e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( A / _i ) e. CC ) |
64 |
2 3 63
|
mp3an23 |
|- ( A e. CC -> ( A / _i ) e. CC ) |
65 |
|
picn |
|- _pi e. CC |
66 |
|
pire |
|- _pi e. RR |
67 |
|
pipos |
|- 0 < _pi |
68 |
66 67
|
gt0ne0ii |
|- _pi =/= 0 |
69 |
65 68
|
pm3.2i |
|- ( _pi e. CC /\ _pi =/= 0 ) |
70 |
|
divdiv1 |
|- ( ( ( A / _i ) e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( _pi e. CC /\ _pi =/= 0 ) ) -> ( ( ( A / _i ) / 2 ) / _pi ) = ( ( A / _i ) / ( 2 x. _pi ) ) ) |
71 |
58 69 70
|
mp3an23 |
|- ( ( A / _i ) e. CC -> ( ( ( A / _i ) / 2 ) / _pi ) = ( ( A / _i ) / ( 2 x. _pi ) ) ) |
72 |
64 71
|
syl |
|- ( A e. CC -> ( ( ( A / _i ) / 2 ) / _pi ) = ( ( A / _i ) / ( 2 x. _pi ) ) ) |
73 |
30 65
|
mulcli |
|- ( 2 x. _pi ) e. CC |
74 |
30 65 32 68
|
mulne0i |
|- ( 2 x. _pi ) =/= 0 |
75 |
73 74
|
pm3.2i |
|- ( ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) |
76 |
|
divdiv1 |
|- ( ( A e. CC /\ ( _i e. CC /\ _i =/= 0 ) /\ ( ( 2 x. _pi ) e. CC /\ ( 2 x. _pi ) =/= 0 ) ) -> ( ( A / _i ) / ( 2 x. _pi ) ) = ( A / ( _i x. ( 2 x. _pi ) ) ) ) |
77 |
59 75 76
|
mp3an23 |
|- ( A e. CC -> ( ( A / _i ) / ( 2 x. _pi ) ) = ( A / ( _i x. ( 2 x. _pi ) ) ) ) |
78 |
72 77
|
eqtrd |
|- ( A e. CC -> ( ( ( A / _i ) / 2 ) / _pi ) = ( A / ( _i x. ( 2 x. _pi ) ) ) ) |
79 |
62 78
|
eqtrd |
|- ( A e. CC -> ( ( ( A / 2 ) / _i ) / _pi ) = ( A / ( _i x. ( 2 x. _pi ) ) ) ) |
80 |
79
|
eleq1d |
|- ( A e. CC -> ( ( ( ( A / 2 ) / _i ) / _pi ) e. ZZ <-> ( A / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |
81 |
8 57 80
|
3bitr3d |
|- ( A e. CC -> ( ( exp ` A ) = 1 <-> ( A / ( _i x. ( 2 x. _pi ) ) ) e. ZZ ) ) |