Metamath Proof Explorer


Theorem halfcl

Description: Closure of half of a number. (Contributed by NM, 1-Jan-2006)

Ref Expression
Assertion halfcl
|- ( A e. CC -> ( A / 2 ) e. CC )

Proof

Step Hyp Ref Expression
1 2cn
 |-  2 e. CC
2 2ne0
 |-  2 =/= 0
3 divcl
 |-  ( ( A e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> ( A / 2 ) e. CC )
4 1 2 3 mp3an23
 |-  ( A e. CC -> ( A / 2 ) e. CC )