| Step |
Hyp |
Ref |
Expression |
| 1 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
| 2 |
1
|
recni |
|- ( _pi / 2 ) e. CC |
| 3 |
|
simpl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> A e. CC ) |
| 4 |
|
nncan |
|- ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) = A ) |
| 5 |
2 3 4
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) = A ) |
| 6 |
5
|
fveq2d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) ) = ( cos ` A ) ) |
| 7 |
|
subcl |
|- ( ( ( _pi / 2 ) e. CC /\ A e. CC ) -> ( ( _pi / 2 ) - A ) e. CC ) |
| 8 |
2 3 7
|
sylancr |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( _pi / 2 ) - A ) e. CC ) |
| 9 |
|
coshalfpim |
|- ( ( ( _pi / 2 ) - A ) e. CC -> ( cos ` ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) ) = ( sin ` ( ( _pi / 2 ) - A ) ) ) |
| 10 |
8 9
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) ) = ( sin ` ( ( _pi / 2 ) - A ) ) ) |
| 11 |
6 10
|
eqtr3d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) = ( sin ` ( ( _pi / 2 ) - A ) ) ) |
| 12 |
5
|
adantr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) = A ) |
| 13 |
|
picn |
|- _pi e. CC |
| 14 |
13
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> _pi e. CC ) |
| 15 |
|
pire |
|- _pi e. RR |
| 16 |
|
pipos |
|- 0 < _pi |
| 17 |
15 16
|
gt0ne0ii |
|- _pi =/= 0 |
| 18 |
17
|
a1i |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> _pi =/= 0 ) |
| 19 |
8 14 18
|
divcan1d |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) x. _pi ) = ( ( _pi / 2 ) - A ) ) |
| 20 |
19
|
adantr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) x. _pi ) = ( ( _pi / 2 ) - A ) ) |
| 21 |
|
zre |
|- ( ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ -> ( ( ( _pi / 2 ) - A ) / _pi ) e. RR ) |
| 22 |
21
|
adantl |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( ( _pi / 2 ) - A ) / _pi ) e. RR ) |
| 23 |
|
remulcl |
|- ( ( ( ( ( _pi / 2 ) - A ) / _pi ) e. RR /\ _pi e. RR ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) x. _pi ) e. RR ) |
| 24 |
22 15 23
|
sylancl |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) x. _pi ) e. RR ) |
| 25 |
20 24
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( _pi / 2 ) - A ) e. RR ) |
| 26 |
|
resubcl |
|- ( ( ( _pi / 2 ) e. RR /\ ( ( _pi / 2 ) - A ) e. RR ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) e. RR ) |
| 27 |
1 25 26
|
sylancr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( ( _pi / 2 ) - ( ( _pi / 2 ) - A ) ) e. RR ) |
| 28 |
12 27
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> A e. RR ) |
| 29 |
28
|
rered |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( Re ` A ) = A ) |
| 30 |
|
simplr |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 31 |
29 30
|
eqeltrrd |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
| 32 |
|
0zd |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 e. ZZ ) |
| 33 |
|
elioore |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A e. RR ) |
| 34 |
|
resubcl |
|- ( ( ( _pi / 2 ) e. RR /\ A e. RR ) -> ( ( _pi / 2 ) - A ) e. RR ) |
| 35 |
1 33 34
|
sylancr |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) e. RR ) |
| 36 |
15
|
a1i |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> _pi e. RR ) |
| 37 |
|
eliooord |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( -u ( _pi / 2 ) < A /\ A < ( _pi / 2 ) ) ) |
| 38 |
37
|
simprd |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> A < ( _pi / 2 ) ) |
| 39 |
|
posdif |
|- ( ( A e. RR /\ ( _pi / 2 ) e. RR ) -> ( A < ( _pi / 2 ) <-> 0 < ( ( _pi / 2 ) - A ) ) ) |
| 40 |
33 1 39
|
sylancl |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( A < ( _pi / 2 ) <-> 0 < ( ( _pi / 2 ) - A ) ) ) |
| 41 |
38 40
|
mpbid |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < ( ( _pi / 2 ) - A ) ) |
| 42 |
16
|
a1i |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < _pi ) |
| 43 |
35 36 41 42
|
divgt0d |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 0 < ( ( ( _pi / 2 ) - A ) / _pi ) ) |
| 44 |
1
|
a1i |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( _pi / 2 ) e. RR ) |
| 45 |
2
|
negcli |
|- -u ( _pi / 2 ) e. CC |
| 46 |
13 2
|
negsubi |
|- ( _pi + -u ( _pi / 2 ) ) = ( _pi - ( _pi / 2 ) ) |
| 47 |
|
pidiv2halves |
|- ( ( _pi / 2 ) + ( _pi / 2 ) ) = _pi |
| 48 |
13 2 2 47
|
subaddrii |
|- ( _pi - ( _pi / 2 ) ) = ( _pi / 2 ) |
| 49 |
46 48
|
eqtri |
|- ( _pi + -u ( _pi / 2 ) ) = ( _pi / 2 ) |
| 50 |
2 13 45 49
|
subaddrii |
|- ( ( _pi / 2 ) - _pi ) = -u ( _pi / 2 ) |
| 51 |
37
|
simpld |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> -u ( _pi / 2 ) < A ) |
| 52 |
50 51
|
eqbrtrid |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - _pi ) < A ) |
| 53 |
44 36 33 52
|
ltsub23d |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) < _pi ) |
| 54 |
13
|
mulridi |
|- ( _pi x. 1 ) = _pi |
| 55 |
53 54
|
breqtrrdi |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( _pi / 2 ) - A ) < ( _pi x. 1 ) ) |
| 56 |
|
1red |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> 1 e. RR ) |
| 57 |
|
ltdivmul |
|- ( ( ( ( _pi / 2 ) - A ) e. RR /\ 1 e. RR /\ ( _pi e. RR /\ 0 < _pi ) ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) < 1 <-> ( ( _pi / 2 ) - A ) < ( _pi x. 1 ) ) ) |
| 58 |
35 56 36 42 57
|
syl112anc |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( ( ( _pi / 2 ) - A ) / _pi ) < 1 <-> ( ( _pi / 2 ) - A ) < ( _pi x. 1 ) ) ) |
| 59 |
55 58
|
mpbird |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( ( _pi / 2 ) - A ) / _pi ) < 1 ) |
| 60 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
| 61 |
59 60
|
breqtrdi |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> ( ( ( _pi / 2 ) - A ) / _pi ) < ( 0 + 1 ) ) |
| 62 |
|
btwnnz |
|- ( ( 0 e. ZZ /\ 0 < ( ( ( _pi / 2 ) - A ) / _pi ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) < ( 0 + 1 ) ) -> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) |
| 63 |
32 43 61 62
|
syl3anc |
|- ( A e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) -> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) |
| 64 |
31 63
|
syl |
|- ( ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) /\ ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) -> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) |
| 65 |
64
|
pm2.01da |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) |
| 66 |
|
sineq0 |
|- ( ( ( _pi / 2 ) - A ) e. CC -> ( ( sin ` ( ( _pi / 2 ) - A ) ) = 0 <-> ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) ) |
| 67 |
8 66
|
syl |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( sin ` ( ( _pi / 2 ) - A ) ) = 0 <-> ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) ) |
| 68 |
67
|
necon3abid |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( ( sin ` ( ( _pi / 2 ) - A ) ) =/= 0 <-> -. ( ( ( _pi / 2 ) - A ) / _pi ) e. ZZ ) ) |
| 69 |
65 68
|
mpbird |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( sin ` ( ( _pi / 2 ) - A ) ) =/= 0 ) |
| 70 |
11 69
|
eqnetrd |
|- ( ( A e. CC /\ ( Re ` A ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` A ) =/= 0 ) |