Step |
Hyp |
Ref |
Expression |
1 |
|
zltp1le |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A < B <-> ( A + 1 ) <_ B ) ) |
2 |
|
peano2z |
|- ( A e. ZZ -> ( A + 1 ) e. ZZ ) |
3 |
|
zre |
|- ( ( A + 1 ) e. ZZ -> ( A + 1 ) e. RR ) |
4 |
2 3
|
syl |
|- ( A e. ZZ -> ( A + 1 ) e. RR ) |
5 |
|
zre |
|- ( B e. ZZ -> B e. RR ) |
6 |
|
lenlt |
|- ( ( ( A + 1 ) e. RR /\ B e. RR ) -> ( ( A + 1 ) <_ B <-> -. B < ( A + 1 ) ) ) |
7 |
4 5 6
|
syl2an |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( ( A + 1 ) <_ B <-> -. B < ( A + 1 ) ) ) |
8 |
1 7
|
bitrd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A < B <-> -. B < ( A + 1 ) ) ) |
9 |
8
|
biimpd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A < B -> -. B < ( A + 1 ) ) ) |
10 |
9
|
impancom |
|- ( ( A e. ZZ /\ A < B ) -> ( B e. ZZ -> -. B < ( A + 1 ) ) ) |
11 |
10
|
con2d |
|- ( ( A e. ZZ /\ A < B ) -> ( B < ( A + 1 ) -> -. B e. ZZ ) ) |
12 |
11
|
3impia |
|- ( ( A e. ZZ /\ A < B /\ B < ( A + 1 ) ) -> -. B e. ZZ ) |