Metamath Proof Explorer


Theorem divgt0d

Description: The ratio of two positive numbers is positive. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses ltp1d.1
|- ( ph -> A e. RR )
divgt0d.2
|- ( ph -> B e. RR )
divgt0d.3
|- ( ph -> 0 < A )
divgt0d.4
|- ( ph -> 0 < B )
Assertion divgt0d
|- ( ph -> 0 < ( A / B ) )

Proof

Step Hyp Ref Expression
1 ltp1d.1
 |-  ( ph -> A e. RR )
2 divgt0d.2
 |-  ( ph -> B e. RR )
3 divgt0d.3
 |-  ( ph -> 0 < A )
4 divgt0d.4
 |-  ( ph -> 0 < B )
5 divgt0
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( A / B ) )
6 1 3 2 4 5 syl22anc
 |-  ( ph -> 0 < ( A / B ) )