Description: The product of two numbers greater than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltp1d.1 | |- ( ph -> A e. RR ) |
|
| divgt0d.2 | |- ( ph -> B e. RR ) |
||
| mulgt1d.3 | |- ( ph -> 1 < A ) |
||
| mulgt1d.4 | |- ( ph -> 1 < B ) |
||
| Assertion | mulgt1d | |- ( ph -> 1 < ( A x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1d.1 | |- ( ph -> A e. RR ) |
|
| 2 | divgt0d.2 | |- ( ph -> B e. RR ) |
|
| 3 | mulgt1d.3 | |- ( ph -> 1 < A ) |
|
| 4 | mulgt1d.4 | |- ( ph -> 1 < B ) |
|
| 5 | mulgt1 | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < A /\ 1 < B ) ) -> 1 < ( A x. B ) ) |
|
| 6 | 1 2 3 4 5 | syl22anc | |- ( ph -> 1 < ( A x. B ) ) |