Metamath Proof Explorer
Description: The product of two numbers greater than 1 is greater than 1.
(Contributed by Mario Carneiro, 28-May-2016)
|
|
Ref |
Expression |
|
Hypotheses |
ltp1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
|
|
divgt0d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
|
|
mulgt1d.3 |
⊢ ( 𝜑 → 1 < 𝐴 ) |
|
|
mulgt1d.4 |
⊢ ( 𝜑 → 1 < 𝐵 ) |
|
Assertion |
mulgt1d |
⊢ ( 𝜑 → 1 < ( 𝐴 · 𝐵 ) ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltp1d.1 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ ) |
| 2 |
|
divgt0d.2 |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
| 3 |
|
mulgt1d.3 |
⊢ ( 𝜑 → 1 < 𝐴 ) |
| 4 |
|
mulgt1d.4 |
⊢ ( 𝜑 → 1 < 𝐵 ) |
| 5 |
|
mulgt1 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 1 < 𝐴 ∧ 1 < 𝐵 ) ) → 1 < ( 𝐴 · 𝐵 ) ) |
| 6 |
1 2 3 4 5
|
syl22anc |
⊢ ( 𝜑 → 1 < ( 𝐴 · 𝐵 ) ) |