Metamath Proof Explorer


Theorem cosne0

Description: The cosine function has no zeroes within the vertical strip of the complex plane between real part -upi / 2 and pi / 2 . (Contributed by Mario Carneiro, 2-Apr-2015)

Ref Expression
Assertion cosne0 AAπ2π2cosA0

Proof

Step Hyp Ref Expression
1 halfpire π2
2 1 recni π2
3 simpl AAπ2π2A
4 nncan π2Aπ2π2A=A
5 2 3 4 sylancr AAπ2π2π2π2A=A
6 5 fveq2d AAπ2π2cosπ2π2A=cosA
7 subcl π2Aπ2A
8 2 3 7 sylancr AAπ2π2π2A
9 coshalfpim π2Acosπ2π2A=sinπ2A
10 8 9 syl AAπ2π2cosπ2π2A=sinπ2A
11 6 10 eqtr3d AAπ2π2cosA=sinπ2A
12 5 adantr AAπ2π2π2Aππ2π2A=A
13 picn π
14 13 a1i AAπ2π2π
15 pire π
16 pipos 0<π
17 15 16 gt0ne0ii π0
18 17 a1i AAπ2π2π0
19 8 14 18 divcan1d AAπ2π2π2Aππ=π2A
20 19 adantr AAπ2π2π2Aππ2Aππ=π2A
21 zre π2Aππ2Aπ
22 21 adantl AAπ2π2π2Aππ2Aπ
23 remulcl π2Aπππ2Aππ
24 22 15 23 sylancl AAπ2π2π2Aππ2Aππ
25 20 24 eqeltrrd AAπ2π2π2Aππ2A
26 resubcl π2π2Aπ2π2A
27 1 25 26 sylancr AAπ2π2π2Aππ2π2A
28 12 27 eqeltrrd AAπ2π2π2AπA
29 28 rered AAπ2π2π2AπA=A
30 simplr AAπ2π2π2AπAπ2π2
31 29 30 eqeltrrd AAπ2π2π2AπAπ2π2
32 0zd Aπ2π20
33 elioore Aπ2π2A
34 resubcl π2Aπ2A
35 1 33 34 sylancr Aπ2π2π2A
36 15 a1i Aπ2π2π
37 eliooord Aπ2π2π2<AA<π2
38 37 simprd Aπ2π2A<π2
39 posdif Aπ2A<π20<π2A
40 33 1 39 sylancl Aπ2π2A<π20<π2A
41 38 40 mpbid Aπ2π20<π2A
42 16 a1i Aπ2π20<π
43 35 36 41 42 divgt0d Aπ2π20<π2Aπ
44 1 a1i Aπ2π2π2
45 2 negcli π2
46 13 2 negsubi π+π2=ππ2
47 pidiv2halves π2+π2=π
48 13 2 2 47 subaddrii ππ2=π2
49 46 48 eqtri π+π2=π2
50 2 13 45 49 subaddrii π2π=π2
51 37 simpld Aπ2π2π2<A
52 50 51 eqbrtrid Aπ2π2π2π<A
53 44 36 33 52 ltsub23d Aπ2π2π2A<π
54 13 mulridi π1=π
55 53 54 breqtrrdi Aπ2π2π2A<π1
56 1red Aπ2π21
57 ltdivmul π2A1π0<ππ2Aπ<1π2A<π1
58 35 56 36 42 57 syl112anc Aπ2π2π2Aπ<1π2A<π1
59 55 58 mpbird Aπ2π2π2Aπ<1
60 1e0p1 1=0+1
61 59 60 breqtrdi Aπ2π2π2Aπ<0+1
62 btwnnz 00<π2Aππ2Aπ<0+1¬π2Aπ
63 32 43 61 62 syl3anc Aπ2π2¬π2Aπ
64 31 63 syl AAπ2π2π2Aπ¬π2Aπ
65 64 pm2.01da AAπ2π2¬π2Aπ
66 sineq0 π2Asinπ2A=0π2Aπ
67 8 66 syl AAπ2π2sinπ2A=0π2Aπ
68 67 necon3abid AAπ2π2sinπ2A0¬π2Aπ
69 65 68 mpbird AAπ2π2sinπ2A0
70 11 69 eqnetrd AAπ2π2cosA0