| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elintab.ex | ⊢ 𝐴  ∈  V | 
						
							| 2 | 1 | elint | ⊢ ( 𝐴  ∈  ∩  { 𝑥  ∣  𝜑 }  ↔  ∀ 𝑦 ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  →  𝐴  ∈  𝑦 ) ) | 
						
							| 3 |  | nfsab1 | ⊢ Ⅎ 𝑥 𝑦  ∈  { 𝑥  ∣  𝜑 } | 
						
							| 4 |  | nfv | ⊢ Ⅎ 𝑥 𝐴  ∈  𝑦 | 
						
							| 5 | 3 4 | nfim | ⊢ Ⅎ 𝑥 ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  →  𝐴  ∈  𝑦 ) | 
						
							| 6 |  | nfv | ⊢ Ⅎ 𝑦 ( 𝜑  →  𝐴  ∈  𝑥 ) | 
						
							| 7 |  | eleq1w | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  ↔  𝑥  ∈  { 𝑥  ∣  𝜑 } ) ) | 
						
							| 8 |  | abid | ⊢ ( 𝑥  ∈  { 𝑥  ∣  𝜑 }  ↔  𝜑 ) | 
						
							| 9 | 7 8 | bitrdi | ⊢ ( 𝑦  =  𝑥  →  ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  ↔  𝜑 ) ) | 
						
							| 10 |  | eleq2w | ⊢ ( 𝑦  =  𝑥  →  ( 𝐴  ∈  𝑦  ↔  𝐴  ∈  𝑥 ) ) | 
						
							| 11 | 9 10 | imbi12d | ⊢ ( 𝑦  =  𝑥  →  ( ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  →  𝐴  ∈  𝑦 )  ↔  ( 𝜑  →  𝐴  ∈  𝑥 ) ) ) | 
						
							| 12 | 5 6 11 | cbvalv1 | ⊢ ( ∀ 𝑦 ( 𝑦  ∈  { 𝑥  ∣  𝜑 }  →  𝐴  ∈  𝑦 )  ↔  ∀ 𝑥 ( 𝜑  →  𝐴  ∈  𝑥 ) ) | 
						
							| 13 | 2 12 | bitri | ⊢ ( 𝐴  ∈  ∩  { 𝑥  ∣  𝜑 }  ↔  ∀ 𝑥 ( 𝜑  →  𝐴  ∈  𝑥 ) ) |