Metamath Proof Explorer


Theorem elioc1

Description: Membership in an open-below, closed-above interval of extended reals. (Contributed by NM, 24-Dec-2006) (Revised by Mario Carneiro, 3-Nov-2013)

Ref Expression
Assertion elioc1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 df-ioc (,] = ( 𝑥 ∈ ℝ* , 𝑦 ∈ ℝ* ↦ { 𝑧 ∈ ℝ* ∣ ( 𝑥 < 𝑧𝑧𝑦 ) } )
2 1 elixx1 ( ( 𝐴 ∈ ℝ*𝐵 ∈ ℝ* ) → ( 𝐶 ∈ ( 𝐴 (,] 𝐵 ) ↔ ( 𝐶 ∈ ℝ*𝐴 < 𝐶𝐶𝐵 ) ) )