Metamath Proof Explorer


Theorem elpaddatriN

Description: Condition implying membership in a projective subspace sum with a point. (Contributed by NM, 1-Feb-2012) (New usage is discouraged.)

Ref Expression
Hypotheses paddfval.l = ( le ‘ 𝐾 )
paddfval.j = ( join ‘ 𝐾 )
paddfval.a 𝐴 = ( Atoms ‘ 𝐾 )
paddfval.p + = ( +𝑃𝐾 )
Assertion elpaddatriN ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴 ) ∧ ( 𝑅𝑋𝑆𝐴𝑆 ( 𝑅 𝑄 ) ) ) → 𝑆 ∈ ( 𝑋 + { 𝑄 } ) )

Proof

Step Hyp Ref Expression
1 paddfval.l = ( le ‘ 𝐾 )
2 paddfval.j = ( join ‘ 𝐾 )
3 paddfval.a 𝐴 = ( Atoms ‘ 𝐾 )
4 paddfval.p + = ( +𝑃𝐾 )
5 simpl1 ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴 ) ∧ ( 𝑅𝑋𝑆𝐴𝑆 ( 𝑅 𝑄 ) ) ) → 𝐾 ∈ Lat )
6 simpl2 ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴 ) ∧ ( 𝑅𝑋𝑆𝐴𝑆 ( 𝑅 𝑄 ) ) ) → 𝑋𝐴 )
7 simpl3 ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴 ) ∧ ( 𝑅𝑋𝑆𝐴𝑆 ( 𝑅 𝑄 ) ) ) → 𝑄𝐴 )
8 7 snssd ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴 ) ∧ ( 𝑅𝑋𝑆𝐴𝑆 ( 𝑅 𝑄 ) ) ) → { 𝑄 } ⊆ 𝐴 )
9 simpr1 ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴 ) ∧ ( 𝑅𝑋𝑆𝐴𝑆 ( 𝑅 𝑄 ) ) ) → 𝑅𝑋 )
10 snidg ( 𝑄𝐴𝑄 ∈ { 𝑄 } )
11 7 10 syl ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴 ) ∧ ( 𝑅𝑋𝑆𝐴𝑆 ( 𝑅 𝑄 ) ) ) → 𝑄 ∈ { 𝑄 } )
12 simpr2 ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴 ) ∧ ( 𝑅𝑋𝑆𝐴𝑆 ( 𝑅 𝑄 ) ) ) → 𝑆𝐴 )
13 simpr3 ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴 ) ∧ ( 𝑅𝑋𝑆𝐴𝑆 ( 𝑅 𝑄 ) ) ) → 𝑆 ( 𝑅 𝑄 ) )
14 1 2 3 4 elpaddri ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴 ∧ { 𝑄 } ⊆ 𝐴 ) ∧ ( 𝑅𝑋𝑄 ∈ { 𝑄 } ) ∧ ( 𝑆𝐴𝑆 ( 𝑅 𝑄 ) ) ) → 𝑆 ∈ ( 𝑋 + { 𝑄 } ) )
15 5 6 8 9 11 12 13 14 syl322anc ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑄𝐴 ) ∧ ( 𝑅𝑋𝑆𝐴𝑆 ( 𝑅 𝑄 ) ) ) → 𝑆 ∈ ( 𝑋 + { 𝑄 } ) )