Metamath Proof Explorer


Theorem elpredim

Description: Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 9-May-2012)

Ref Expression
Hypothesis elpredim.1 𝑋 ∈ V
Assertion elpredim ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → 𝑌 𝑅 𝑋 )

Proof

Step Hyp Ref Expression
1 elpredim.1 𝑋 ∈ V
2 df-pred Pred ( 𝑅 , 𝐴 , 𝑋 ) = ( 𝐴 ∩ ( 𝑅 “ { 𝑋 } ) )
3 2 elin2 ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) ↔ ( 𝑌𝐴𝑌 ∈ ( 𝑅 “ { 𝑋 } ) ) )
4 elimasng ( ( 𝑋 ∈ V ∧ 𝑌 ∈ ( 𝑅 “ { 𝑋 } ) ) → ( 𝑌 ∈ ( 𝑅 “ { 𝑋 } ) ↔ ⟨ 𝑋 , 𝑌 ⟩ ∈ 𝑅 ) )
5 opelcnvg ( ( 𝑋 ∈ V ∧ 𝑌 ∈ ( 𝑅 “ { 𝑋 } ) ) → ( ⟨ 𝑋 , 𝑌 ⟩ ∈ 𝑅 ↔ ⟨ 𝑌 , 𝑋 ⟩ ∈ 𝑅 ) )
6 4 5 bitrd ( ( 𝑋 ∈ V ∧ 𝑌 ∈ ( 𝑅 “ { 𝑋 } ) ) → ( 𝑌 ∈ ( 𝑅 “ { 𝑋 } ) ↔ ⟨ 𝑌 , 𝑋 ⟩ ∈ 𝑅 ) )
7 1 6 mpan ( 𝑌 ∈ ( 𝑅 “ { 𝑋 } ) → ( 𝑌 ∈ ( 𝑅 “ { 𝑋 } ) ↔ ⟨ 𝑌 , 𝑋 ⟩ ∈ 𝑅 ) )
8 7 ibi ( 𝑌 ∈ ( 𝑅 “ { 𝑋 } ) → ⟨ 𝑌 , 𝑋 ⟩ ∈ 𝑅 )
9 df-br ( 𝑌 𝑅 𝑋 ↔ ⟨ 𝑌 , 𝑋 ⟩ ∈ 𝑅 )
10 8 9 sylibr ( 𝑌 ∈ ( 𝑅 “ { 𝑋 } ) → 𝑌 𝑅 𝑋 )
11 3 10 simplbiim ( 𝑌 ∈ Pred ( 𝑅 , 𝐴 , 𝑋 ) → 𝑌 𝑅 𝑋 )