Metamath Proof Explorer


Theorem elpredim

Description: Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 9-May-2012) (Proof shortened by BJ, 16-Oct-2024)

Ref Expression
Hypothesis elpredim.1 XV
Assertion elpredim YPredRAXYRX

Proof

Step Hyp Ref Expression
1 elpredim.1 XV
2 elpredimg XVYPredRAXYRX
3 1 2 mpan YPredRAXYRX