Metamath Proof Explorer


Theorem elspansn

Description: Membership in the span of a singleton. (Contributed by NM, 5-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion elspansn ( 𝐴 ∈ ℋ → ( 𝐵 ∈ ( span ‘ { 𝐴 } ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 · 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 sneq ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → { 𝐴 } = { if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) } )
2 1 fveq2d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( span ‘ { 𝐴 } ) = ( span ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) } ) )
3 2 eleq2d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( 𝐵 ∈ ( span ‘ { 𝐴 } ) ↔ 𝐵 ∈ ( span ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) } ) ) )
4 oveq2 ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( 𝑥 · 𝐴 ) = ( 𝑥 · if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) )
5 4 eqeq2d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( 𝐵 = ( 𝑥 · 𝐴 ) ↔ 𝐵 = ( 𝑥 · if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) )
6 5 rexbidv ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 · 𝐴 ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 · if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) )
7 3 6 bibi12d ( 𝐴 = if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) → ( ( 𝐵 ∈ ( span ‘ { 𝐴 } ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 · 𝐴 ) ) ↔ ( 𝐵 ∈ ( span ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) } ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 · if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) ) ) )
8 ifhvhv0 if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ∈ ℋ
9 8 elspansni ( 𝐵 ∈ ( span ‘ { if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) } ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 · if ( 𝐴 ∈ ℋ , 𝐴 , 0 ) ) )
10 7 9 dedth ( 𝐴 ∈ ℋ → ( 𝐵 ∈ ( span ‘ { 𝐴 } ) ↔ ∃ 𝑥 ∈ ℂ 𝐵 = ( 𝑥 · 𝐴 ) ) )