Metamath Proof Explorer
		
		
		
		Description:  Membership in a finite set of sequential integers.  (Contributed by NM, 4-Oct-2005)  (Revised by Mario Carneiro, 28-Apr-2015)
		
			
				
					|  |  | Ref | Expression | 
				
					|  | Assertion | eluzfz | ⊢  ( ( 𝐾  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  𝐾  ∈  ( 𝑀 ... 𝑁 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elfzuzb | ⊢ ( 𝐾  ∈  ( 𝑀 ... 𝑁 )  ↔  ( 𝐾  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝐾 ) ) ) | 
						
							| 2 | 1 | biimpri | ⊢ ( ( 𝐾  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  𝑁  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  𝐾  ∈  ( 𝑀 ... 𝑁 ) ) |