Metamath Proof Explorer
Description: Membership in a finite set of sequential integers. (Contributed by NM, 4-Oct-2005) (Revised by Mario Carneiro, 28-Apr-2015)
|
|
Ref |
Expression |
|
Assertion |
eluzfz |
⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
elfzuzb |
⊢ ( 𝐾 ∈ ( 𝑀 ... 𝑁 ) ↔ ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) ) |
2 |
1
|
biimpri |
⊢ ( ( 𝐾 ∈ ( ℤ≥ ‘ 𝑀 ) ∧ 𝑁 ∈ ( ℤ≥ ‘ 𝐾 ) ) → 𝐾 ∈ ( 𝑀 ... 𝑁 ) ) |