Metamath Proof Explorer


Theorem emre

Description: The Euler-Mascheroni constant is a real number. (Contributed by Mario Carneiro, 11-Jul-2014)

Ref Expression
Assertion emre γ ∈ ℝ

Proof

Step Hyp Ref Expression
1 1re 1 ∈ ℝ
2 2rp 2 ∈ ℝ+
3 relogcl ( 2 ∈ ℝ+ → ( log ‘ 2 ) ∈ ℝ )
4 2 3 ax-mp ( log ‘ 2 ) ∈ ℝ
5 1 4 resubcli ( 1 − ( log ‘ 2 ) ) ∈ ℝ
6 iccssre ( ( ( 1 − ( log ‘ 2 ) ) ∈ ℝ ∧ 1 ∈ ℝ ) → ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) ⊆ ℝ )
7 5 1 6 mp2an ( ( 1 − ( log ‘ 2 ) ) [,] 1 ) ⊆ ℝ
8 emcl γ ∈ ( ( 1 − ( log ‘ 2 ) ) [,] 1 )
9 7 8 sselii γ ∈ ℝ